1
|
Sabatelle RC, Geller A, Li S, Van Heest A, Sachdeva UM, Bressler E, Korunes-Miller J, Tfayli B, Tal-Mason A, Kharroubi H, Colson YL, Grinstaff MW. Synthesis of Amphiphilic Amino Poly-Amido-Saccharide and Poly(lactic) Acid Block Copolymers and Fabrication of Paclitaxel-Loaded Mucoadhesive Nanoparticles. Bioconjug Chem 2024; 35:1429-1440. [PMID: 39159059 PMCID: PMC11948293 DOI: 10.1021/acs.bioconjchem.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Drug delivery to the esophagus through systemic administration remains challenging, as minimal drug reaches the desired target. Local delivery offers the potential for improved efficacy while minimizing off-target toxicities but necessitates bioadhesive properties for mucosal delivery. Herein, we describe the synthesis of two new mucoadhesive amphiphilic copolymers prepared by sequential ring-opening copolymerization or postpolymerization click conjugation. Both strategies yield block copolymers containing a hydrophilic amine-functionalized poly-amido-saccharide and either a hydrophobic alkyl derivatized poly-amido-saccharide or poly(lactic acid), respectively. The latter resulting copolymers readily self-assemble into spherical, ≈200 nm diameter, positively charged mucoadhesive nanoparticles. The NPs entrap ultrahigh levels of paclitaxel via encapsulation of free paclitaxel and paclitaxel conjugated to a biodegradable, biocompatible poly(1,2-glycerol carbonate). Paclitaxel-loaded NPs rapidly enter cells, release paclitaxel, are cytotoxic to esophageal OE33 and OE19 tumor cells in vitro, and, importantly, demonstrate improved mucoadhesion compared to conventional poly(ethylene glycol)-poly(lactic acid) nanoparticles to ex vivo esophageal tissue.
Collapse
Affiliation(s)
- Robert C. Sabatelle
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Abraham Geller
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Siyuan Li
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Audrey Van Heest
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Uma M. Sachdeva
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eric Bressler
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Jenny Korunes-Miller
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Bassel Tfayli
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aya Tal-Mason
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hussein Kharroubi
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mark W. Grinstaff
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| |
Collapse
|
2
|
Duan X, Wang P, He L, He Z, Wang S, Yang F, Gao C, Ren W, Lin J, Chen T, Xu C, Li J, Wu A. Peptide-Functionalized Inorganic Oxide Nanomaterials for Solid Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311548. [PMID: 38333964 DOI: 10.1002/adma.202311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The diagnosis and treatment of solid tumors have undergone significant advancements marked by a trend toward increased specificity and integration of imaging and therapeutic functions. The multifaceted nature of inorganic oxide nanomaterials (IONs), which boast optical, magnetic, ultrasonic, and biochemical modulatory properties, makes them ideal building blocks for developing multifunctional nanoplatforms. A promising class of materials that have emerged in this context are peptide-functionalized inorganic oxide nanomaterials (PFIONs), which have demonstrated excellent performance in multifunctional imaging and therapy, making them potential candidates for advancing solid tumor diagnosis and treatment. Owing to the functionalities of peptides in tumor targeting, penetration, responsiveness, and therapy, well-designed PFIONs can specifically accumulate and release therapeutic or imaging agents at the solid tumor sites, enabling precise imaging and effective treatment. This review provides an overview of the recent advances in the use of PFIONs for the imaging and treatment of solid tumors, highlighting the superiority of imaging and therapeutic integration as well as synergistic treatment. Moreover, the review discusses the challenges and prospects of PFIONs in depth, aiming to promote the intersection of the interdisciplinary to facilitate their clinical translation and the development of personalized diagnostic and therapeutic systems by optimizing the material systems.
Collapse
Affiliation(s)
- Xiaolin Duan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pin Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| |
Collapse
|
3
|
Saeidi H, Mozaffari M, Ilbey S, Dutz S, Zahn D, Azimi G, Bock M. Effect of Europium Substitution on the Structural, Magnetic and Relaxivity Properties of Mn-Zn Ferrite Nanoparticles: A Dual-Mode MRI Contrast-Agent Candidate. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020331. [PMID: 36678084 PMCID: PMC9861161 DOI: 10.3390/nano13020331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 05/14/2023]
Abstract
Magnetic nanoparticles (MNPs) have been widely applied as magnetic resonance imaging (MRI) contrast agents. MNPs offer significant contrast improvements in MRI through their tunable relaxivities, but to apply them as clinical contrast agents effectively, they should exhibit a high saturation magnetization, good colloidal stability and sufficient biocompatibility. In this work, we present a detailed description of the synthesis and the characterizations of europium-substituted Mn-Zn ferrite (Mn0.6Zn0.4EuxFe2-xO4, x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, and 0.15, herein named MZF for x = 0.00 and EuMZF for others). MNPs were synthesized by the coprecipitation method and subsequent hydrothermal treatment, coated with citric acid (CA) or pluronic F127 (PF-127) and finally characterized by X-ray Diffraction (XRD), Inductively Coupled Plasma (ICP), Vibrating Sample Magnetometry (VSM), Fourier-Transform Infrared (FTIR), Dynamic Light Scattering (DLS) and MRI Relaxometry at 3T methods. The XRD studies revealed that all main diffraction peaks are matched with the spinel structure very well, so they are nearly single phase. Furthermore, XRD study showed that, although there are no significant changes in lattice constants, crystallite sizes are affected by europium substitution significantly. Room-temperature magnetometry showed that, in addition to coercivity, both saturation and remnant magnetizations decrease with increasing europium substitution and coating with pluronic F127. FTIR study confirmed the presence of citric acid and poloxamer (pluronic F127) coatings on the surface of the nanoparticles. Relaxometry measurements illustrated that, although the europium-free sample is an excellent negative contrast agent with a high r2 relaxivity, it does not show a positive contrast enhancement as the concentration of nanoparticles increases. By increasing the europium to x = 0.15, r1 relaxivity increased significantly. On the contrary, europium substitution decreased r2 relaxivity due to a reduction in saturation magnetization. The ratio of r2/r1 decreased from 152 for the europium-free sample to 11.2 for x = 0.15, which indicates that Mn0.6Zn0.4Eu0.15Fe1.85O4 is a suitable candidate for dual-mode MRI contrast agent potentially. The samples with citric acid coating had higher r1 and lower r2 relaxivities than those of pluronic F127-coated samples.
Collapse
Affiliation(s)
- Hamidreza Saeidi
- Faculty of Physics, University of Isfahan, Isfahan 8174673441, Iran
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106 Freiburg, Germany
| | - Morteza Mozaffari
- Faculty of Physics, University of Isfahan, Isfahan 8174673441, Iran
- Correspondence: ; Tel.: +98-31-3793-4741
| | - Serhat Ilbey
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106 Freiburg, Germany
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhof-Straße 2, 98693 Ilmenau, Germany
| | - Diana Zahn
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhof-Straße 2, 98693 Ilmenau, Germany
| | - Gholamhassan Azimi
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106 Freiburg, Germany
| |
Collapse
|
4
|
Chen SH, Huang LY, Huang B, Zhang M, Li H, Pang DW, Zhang ZL, Cui R. Ultrasmall MnSe Nanoparticles as T1-MRI Contrast Agents for In Vivo Tumor Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11167-11176. [PMID: 35226454 DOI: 10.1021/acsami.1c25101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic resonance imaging (MRI) has excellent potential in the clinical monitoring of tumors because it can provide high-resolution soft tissue imaging. However, commercial contrast agents (CAs) used in MRI still have some problems such as potential toxicity to the human body, low relaxivity, and a short MRI acquisition window. In this study, ultrasmall MnSe nanoparticles are synthesized by living Staphylococcus aureus cells. The as-prepared MnSe nanoparticles are monodispersed with a uniform particle size (3.50 ± 0.52 nm). Due to the ultrasmall particle size and good water solubility, the MnSe nanoparticles exhibit in vitro high longitudinal relaxivity properties (14.12 ± 1.85 mM-1·s-1). The CCK-8 colorimetric assay, histological analysis, and body weight results show that the MnSe nanoparticles do not have appreciable toxicity on cells and organisms. Besides, the MnSe nanoparticles as T1-MRI CAs offer a long MRI acquisition window to tumor imaging (∼7 h). This work provides a promising T1-MRI CA for clinical tumor imaging and a good reference for the application of functional MnSe nanoparticles in the biomedicine field.
Collapse
Affiliation(s)
- Shi-Hui Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Lu-Yao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
5
|
Guo X, Zhao G. Establishment and Verification of Logistic Regression Model for Qualitative Diagnosis of Ovarian Cancer Based on MRI and Ultrasound Signs. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7531371. [PMID: 35211186 PMCID: PMC8863462 DOI: 10.1155/2022/7531371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To explore the establishment and verification of logistic regression model for qualitative diagnosis of ovarian cancer based on MRI and ultrasonic signs. METHOD 207 patients with ovarian tumors in our hospital from April 2018 to April 2021 were selected, of which 138 were used as the training group for model creation and 69 as the validation group for model evaluation. The differences of MRI and ultrasound signs in patients with ovarian cancer and benign ovarian tumor in the training group were analyzed. The risk factors were screened by multifactor unconditional logistic regression analysis, and the regression equation was established. The self-verification was carried out by subject working characteristics (ROC), and the external verification was carried out by K-fold cross verification. RESULT There was no significant difference in age, body mass index, menstruation, dysmenorrhea, times of pregnancy, cumulative menstrual years, and marital status between the two groups (P > 0.05). After logistic regression analysis, the diagnostic model of ovarian cancer was established: logit (P) = -1.153 + [MRI signs : morphology × 1.459 + boundary × 1.549 + reinforcement × 1.492 + tumor components × 1.553] + [ultrasonic signs : morphology × 1.594 + mainly real × 1.417 + separated form × 1.294 + large nipple × 1.271 + blood supply × 1.364]; self-verification: AUC of the model is 0.883, diagnostic sensitivity is 93.94%, and specificity is 80.95%; K-fold cross validation: the training accuracy was 0.904 ± 0.009 and the prediction accuracy was 0.881 ± 0.049. CONCLUSION Irregular shape, unclear boundary, obvious enhancement in MRI signs, cystic or solid tumor components and irregular shape, solid-dominated shape, thick septate shape, large nipple, and abundant blood supply in ultrasound signs are independent risk factors for ovarian cancer. After verification, the diagnostic model has good accuracy and stability, which provides basis for clinical decision-making.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Ultrasound, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| | - Guangcai Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| |
Collapse
|
6
|
Sialic acid conjugate-modified liposomes enable tumor homing of epirubicin via neutrophil/monocyte infiltration for tumor therapy. Acta Biomater 2021; 134:702-715. [PMID: 34339869 DOI: 10.1016/j.actbio.2021.07.063] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022]
Abstract
Neutrophils and monocytes (N/Ms) are potential candidates for the delivery of therapeutic agents to the tumor microenvironment (TME) because of their tumor-accumulating nature. L-selectin and Siglec-1, receptors for sialic acid (SA), are highly expressed in circulating neutrophils and monocytes, respectively, in tumor-bearing mice, and N/Ms are recruited to tumors in response to inflammatory cytokines secreted by the TME, promoting tumor growth and invasion. Therefore, we constructed a drug delivery nano-platform using N/Ms as vehicles. SA-stearic acid conjugate was synthesized and utilized to modify epirubicin-loaded liposomes (EPI-SL) for enhanced endocytosis of liposomes by circulating N/Ms. Cellular uptake studies showed that SA modification improved the accumulation of EPI in N/Ms and did not alter the inherent chemotaxis of N/Ms. In tumor-bearing mice, EPI-SL significantly improved the tumor-targeting efficiency and therapeutic efficacy of EPI compared to other preparations and even eradicated tumors because of the tumor-accumulating and inhibitory effects of N/Ms containing EPI-SL. Our research showed, for the first time, that as an N/M-based drug delivery platform, EPI-SL remedied the limited tumor targeting in the conventional EPR effect-based treatment strategy, contributing to the exploitation of a new drug delivery platform for cancer treatment. STATEMENT OF SIGNIFICANCE: Tumor-associated neutrophils (TANs) and macrophages (TAMs) are closely associated with tumor growth and invasion, and therefore the development of therapeutic strategies targeting TANs and TAMs is crucial for tumor treatment. Given that most TANs and TAMs are derived from peripheral blood neutrophils and monocytes (N/Ms), respectively, we synthesized sialic acid-stearic acid conjugates that specifically bind N/Ms for the surface modification of liposomal epirubicin (EPI-SL). The N/Ms loaded with EPI-SL maintained their inherent chemotaxis toward the tumor. Additionally, EPI-SL significantly improved the survival of tumor-bearing mice and even eradicated tumors. These findings suggested that EPI-SL has substantial potential for clinical application by compensating for the previous low efficacy of ex vivo transformed cell infusion and improving the tumor-targeting efficiency.
Collapse
|
7
|
The Efficacy of 18F-FDG PET/CT and Superparamagnetic Nanoferric Oxide MRI in the Diagnosis of Lung Cancer and the Value of 18F-FDG PET/CT in the Prediction of Lymph Node Metastasis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2448782. [PMID: 34552658 PMCID: PMC8452397 DOI: 10.1155/2021/2448782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 01/10/2023]
Abstract
In China, lung cancer is one of the leading causes of death among residents. Early diagnosis is of great significance for early interventional treatment and prolonging survival. PET/CT uses positron radiopharmaceuticals to observe the physiological and biochemical changes of the drug and its metabolites in the body and finally diagnoses the disease. 18F-FDG is a commonly used imaging agent, but its short isotopic half-life limits clinical high-throughput testing. This study retrospectively analyzed the imaging material of 100 lung cancer patients pathologically confirmed. Patients with lymph node metastasis were classified into the LM group (n = 30 cases), and those with no lymph node metastasis were classified into the NLM group (n = 70 cases). The results showed that MRI of superparamagnetic nanoferric oxide was better than diagnosis of lung cancer by the 18F-FDG PET/CT and had a high predictive power for lymph node metastasis. These turned out to be high-value lung cancer diagnosis of superparamagnetic nanoferric oxide MRI and high-capacity lymph node metastasis prediction of 18F-FDG PET/CT, which were worthy of implementation.
Collapse
|
8
|
Ailuno G, Iacobazzi RM, Lopalco A, Baldassari S, Arduino I, Azzariti A, Pastorino S, Caviglioli G, Denora N. The Pharmaceutical Technology Approach on Imaging Innovations from Italian Research. Pharmaceutics 2021; 13:1214. [PMID: 34452175 PMCID: PMC8402236 DOI: 10.3390/pharmaceutics13081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Many modern therapeutic approaches are based on precise diagnostic evidence, where imaging procedures play an essential role. To date, in the diagnostic field, a plethora of agents have been investigated to increase the selectivity and sensitivity of diagnosis. However, the most common drawbacks of conventional imaging agents reside in their non-specificity, short imaging time, instability, and toxicity. Moreover, routinely used diagnostic agents have low molecular weights and consequently a rapid clearance and renal excretion, and this represents a limitation if long-lasting imaging analyses are to be conducted. Thus, the development of new agents for in vivo diagnostics requires not only a deep knowledge of the physical principles of the imaging techniques and of the physiopathological aspects of the disease but also of the relative pharmaceutical and biopharmaceutical requirements. In this scenario, skills in pharmaceutical technology have become highly indispensable in order to respond to these needs. This review specifically aims to collect examples of newly developed diagnostic agents connoting the importance of an appropriate formulation study for the realization of effective products. Within the context of pharmaceutical technology research in Italy, several groups have developed and patented promising agents for fluorescence and radioactive imaging, the most relevant of which are described hereafter.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, O. Flacco St., 70124 Bari, Italy; (R.M.I.); (A.A.)
| | - Antonio Lopalco
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| | - Sara Baldassari
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Ilaria Arduino
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, O. Flacco St., 70124 Bari, Italy; (R.M.I.); (A.A.)
| | - Sara Pastorino
- Nuclear Medicine Unit, S. Andrea Hospital, via Vittorio Veneto 197, 19124 La Spezia, Italy;
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| |
Collapse
|
9
|
Chen C, Ge J, Gao Y, Chen L, Cui J, Zeng J, Gao M. Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1740. [PMID: 34296533 DOI: 10.1002/wnan.1740] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
As a research hotspot, the development of magnetic resonance imaging (MRI) contrast agents has attracted great attention over the past decades for improving the accuracy of diagnosis. Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles with core diameter smaller than 5.0 nm are expected to become a next generation of contrast agents owing to their excellent MRI performance, long blood circulation time upon proper surface modification, renal clearance capacity, and remarkable biosafety profile. On top of these merits, USPIO nanoparticles are used for developing not only T1 contrast agents, but also T2 /T1 switchable contrast agents via assembly/disassembly approaches. In recent years, as a new type of contrast agents, USPIO nanoparticles have shown considerable applications in the diagnosis of various diseases such as vascular pathological changes and inflammations apart from malignant tumors. In this review, we are focusing on the state-of-the-art developments and the latest applications of USPIO nanoparticles as MRI contrast agents to discuss their advantages and future prospects. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yun Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jiabin Cui
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China.,Shanghai University of Medicine and Health Sciences (SUMHS), Shanghai, China
| |
Collapse
|
10
|
Belkahla H, Antunes JC, Lalatonne Y, Sainte Catherine O, Illoul C, Journé C, Jandrot-Perrus M, Coradin T, Gigoux V, Guenin E, Motte L, Helary C. USPIO-PEG nanoparticles functionalized with a highly specific collagen-binding peptide: a step towards MRI diagnosis of fibrosis. J Mater Chem B 2021; 8:5515-5528. [PMID: 32490469 DOI: 10.1039/d0tb00887g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibrosis is characterized by a pathologic deposition of collagen I, leading to impaired function of organs. Tissue biopsy is the gold standard method for the diagnosis of fibrosis but this is an invasive procedure, subject to sampling errors. Several non-invasive techniques such as magnetic resonance imaging (MRI) using non-specific probes have been developed but they are not fully satisfying as they allow diagnosis at a late stage. In this study, collagelin, a collagen-binding peptide has been covalently linked using click chemistry to pegylated Ultra Small Super Paramagnetic Iron Oxide Nanoparticles (USPIO-PO-PEG-collagelin NPs) with the aim of diagnosing fibrosis at an early stage by MRI. USPIO-PO-PEG-collagelin NPs showed a high affinity for collagen I, two times higher than that of free collagelin whereas not peptide labeled USPIO NPs (USPIO-PO-PEG-yne) did not present any affinity. NPs were not toxic for macrophages and fibroblasts. Diffusion through collagen hydrogels concentrated at 3 and 10 mg mL-1 revealed a large accumulation of USPIO-PO-PEG-collagelin NPs within the collagen network after 72 hours, ca. 3 times larger than that of unlabeled USPIO, thereby evidencing the specific targeting of collagen I. Moreover, the quantity of USPIO-PO-PEG-collagelin NPs accumulated within hydrogels was proportional to the collagen concentration. Subsequently, the NPs diffusion through collagen hydrogels was monitored by MRI. The MRI T2 time relaxation decreased much more significantly with depth for USPIO-PO-PEG-collagelin NPs compared to unlabeled ones. Taken together, these results show that USPIO-PEG-collagelin NPs are promising as effective MRI nanotracers for molecular imaging of fibrosis at an early stage.
Collapse
Affiliation(s)
- Hanene Belkahla
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France. and Sorbonne Université, CNRS, Laboratoire de la Chimie de la Matière Condensée (LCMCP), Paris, F-75005, France.
| | - Joana C Antunes
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France.
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France. and AP-HP, Hôpital Avicenne, Services de Biochimie et de Medécine Nucléaire Service, F-93009 Bobigny, France
| | - Odile Sainte Catherine
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France.
| | - Corinne Illoul
- Sorbonne Université, CNRS, Laboratoire de la Chimie de la Matière Condensée (LCMCP), Paris, F-75005, France.
| | - Clément Journé
- INSERM, UMR 1148, LVTS, Université de Paris, F-75018, Université Paris Nord, F-93430, Inserm, Plateforme de Recherche FRIM 6-Inserm U1148, Université de Paris, Paris, France
| | - Martine Jandrot-Perrus
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France.
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de la Chimie de la Matière Condensée (LCMCP), Paris, F-75005, France.
| | - Véronique Gigoux
- INSERM ERL1226-Receptology and Therapeutic Targeting of Cancers, Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, F-31432 Toulouse, France
| | - Erwann Guenin
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France. and Sorbonne Universités, Université de Technologie de Compiègne, Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Compiègne, France
| | - Laurence Motte
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France.
| | - Christophe Helary
- Sorbonne Université, CNRS, Laboratoire de la Chimie de la Matière Condensée (LCMCP), Paris, F-75005, France.
| |
Collapse
|
11
|
A Novel Method to Construct Dual-targeted Magnetic Nanoprobes by Modular Assembling. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|