1
|
Akhtar N, Chauhan M, Gupta P, Antil N, Manna K. A supported pyridylimine-cobalt catalyst for N-formylation of amines using CO 2. Dalton Trans 2023; 52:15384-15393. [PMID: 37043211 DOI: 10.1039/d3dt00058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
N-Formylation of amines with CO2 as a cheap and non-toxic C1-feedstock and hydrosilane reducing agent is a practical and environment friendly method to synthesize formamides. This study describes an efficient and chemoselective mono-N-formylation of amines using CO2 and phenylsilane under mild conditions using a porous metal-organic framework (MOF)-supported single-site cobalt catalyst (pyrim-UiO-Co). The pyrim-UiO-Co MOF has a UiO-topology, and its organic linkers bear a pyridylimine ligated Co catalytic moiety. A wide range of aliphatic and aromatic amines are transformed into desired N-formamides in moderate to excellent yields under 1-5 bar CO2. Pyrim-UiO-Co is tolerant to various functional groups and could be recycled and reused at least 10 times. Mechanistic investigation using kinetic, spectroscopic and density functional theory studies suggests that the formylation of benzylamine proceeds sequentially via oxidative addition of PhSiH3 and CO2 insertion, followed by a turn-over limiting reaction with an amine. Our work highlights the importance of MOF-based Earth-abundant metal catalysts for the practical and eco-friendly synthesis of fine chemicals using cheap feedstocks.
Collapse
Affiliation(s)
- Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Poorvi Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
2
|
Crown Ether as Organocatalyst for Reductive Upgrading of CO2 to N-Containing Benzoheterocyclics and N-Formamides. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Wang J, Li S, Wang Y, Feng X, Yamamoto Y, Bao M. Unsupported Nanoporous Palladium Catalyst for
N
‐Formylation of Amines Using CO
2
as a Sustainable C1 Source. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jixiao Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
| | - Shihong Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
| | - Yunpeng Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
- Research Organization of Science and Technology Ritsumeikan University Kusatsu, Shiga 525-8577 Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
| |
Collapse
|
4
|
Newar R, Kalita R, Akhtar N, Antil N, Chauhan M, Manna K. N-Formylation of amines utilizing CO 2 by a heterogeneous metal–organic framework supported single-site cobalt catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01231f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-site cobalt-hydride supported on oxo-nodes of a porous aluminium metal–organic framework is a chemoselective and reusable catalyst for N-formylation of amines using CO2.
Collapse
Affiliation(s)
- Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rahul Kalita
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
5
|
Ye Z, Chen J. Sulfonate-Grafted Metal–Organic Frameworks for Reductive Functionalization of CO 2 to Benzimidazoles and N-Formamides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zecheng Ye
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 511443, China
| | - Jinzhu Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 511443, China
| |
Collapse
|
6
|
Tian XR, Shi Y, Hou SL, Ma Y, Zhao B. Efficient Cycloaddition of CO 2 and Aziridines Activated by a Quadruple-Interpenetrated Indium-Organic Framework as a Recyclable Catalyst. Inorg Chem 2021; 60:15383-15389. [PMID: 34590842 DOI: 10.1021/acs.inorgchem.1c02034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
On the basis of the global warming effect, it is of great significance to convert CO2 into the high value-added products oxazolidinones, but investigations on main-group-based metal-organic frameworks (MOFs) as heterogeneous catalysts still have not been reported so far. In this work, a quadruple-interpenetrated porous indium-based MOF, {[NH2(CH3)2][In(CPT)2]·3CH3CN·3DMA}n (1), is constructed from the organic ligand 3,5-bis(4'-carboxyphenyl)-1,2,4-triazole through solvothermal reactions, and N2 adsorption proves that the framework has a high Brunauer-Emmett-Teller surface areas with 2024 m2/g. The catalytic research on CO2 conversion reveals that compound 1 has high reactivity for the cycloaddition of CO2 with aziridines, and the product 3-ethyl-5-phenyloxazolidin-2-one can be obtained with a yield of 99% under mild conditions. In addition, 1 exhibits excellent activity for different kinds of substrates and can be reused at least five cycles without any significant deactivation, suggesting that 1 is a potential candidate for the chemical conversion of CO2 and aziridines. Mechanistic explorations indicate that the high efficiency of 1 is attributed to the indium center in the framework as a Lewis acid site, and the large porosity can enrich substrates. Importantly, 1 behaved as the first main-group MOF-based catalyst in the reported coupling reaction of CO2 with aziridines.
Collapse
Affiliation(s)
- Xue-Rui Tian
- Renewable Energy Conversion and Storage Center, Key Laboratory of Advanced Energy Material Chemistry, Department of Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Ying Shi
- Renewable Energy Conversion and Storage Center, Key Laboratory of Advanced Energy Material Chemistry, Department of Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Sheng-Li Hou
- Renewable Energy Conversion and Storage Center, Key Laboratory of Advanced Energy Material Chemistry, Department of Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yue Ma
- Renewable Energy Conversion and Storage Center, Key Laboratory of Advanced Energy Material Chemistry, Department of Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Bin Zhao
- Renewable Energy Conversion and Storage Center, Key Laboratory of Advanced Energy Material Chemistry, Department of Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Rangraz Y, Heravi MM. Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts. RSC Adv 2021; 11:23725-23778. [PMID: 35479780 PMCID: PMC9036543 DOI: 10.1039/d1ra03446d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
The development of cost-effective, efficient, and novel catalytic systems is always an important topic for heterogeneous catalysis from academia and industrial points of view. Heteroatom-doped carbon materials have gained more and more attention as effective heterogeneous catalysts to replace metal-based catalysts, because of their excellent physicochemical properties, outstanding structure characteristics, environmental compatibility, low cost, inexhaustible resources, and low energy consumption. Doping of heteroatoms can tailor the properties of carbons for different utilizations of interest. In comparison to pure carbon catalysts, these catalysts demonstrate superior catalytic activity in many organic reactions. This review highlights the most recent progress in synthetic strategies to fabricate metal-free heteroatom-doped carbon catalysts including single and multiple heteroatom-doped carbons and the catalytic applications of these fascinating materials in various organic transformations such as oxidation, hydrogenation, hydrochlorination, dehydrogenation, etc.
Collapse
Affiliation(s)
- Yalda Rangraz
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran
| | - Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran
| |
Collapse
|
8
|
Pramudita RA, Motokura K. Heterogeneous Organocatalysts for the Reduction of Carbon Dioxide with Silanes. CHEMSUSCHEM 2021; 14:281-292. [PMID: 33140568 DOI: 10.1002/cssc.202002300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Indexed: 06/11/2023]
Abstract
The utilization of carbon dioxide (CO2 ) as feedstock for chemical industries is gaining interest as a sustainable alternative to nonrenewable fossil resources. However, CO2 reduction is necessary to increase its energy content. Hydrosilane is a potential reducing agent that exhibits excellent reactivity under ambient conditions. CO2 hydrosilylation yields versatile products such as silylformate and methoxysilane, whereas formamides and N-methylated products are obtained in the presence of amines. In these transformations, organocatalysts are considered as the more sustainable choice of catalyst. In particular, heterogeneous organocatalysts featuring precisely designed active sites offer higher efficiency due to their recyclability. Herein, an overview is presented of the current development of basic organocatalysts immobilized on various supports for application in the chemical reduction of CO2 with hydrosilanes, and the potential active species parameters that might affect the catalytic activity are identified.
Collapse
Affiliation(s)
- Ria Ayu Pramudita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 2268502, Japan
| | - Ken Motokura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 2268502, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama, 3320012, Japan
| |
Collapse
|
9
|
Wang P, He Q, Zhang H, Sun Q, Cheng Y, Gan T, He X, Ji H. N-formylation of amines using phenylsilane and CO2 over ZnO catalyst under mild condition. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Wu Q, Chen J, Liu Z, Xu Y. CO Activation Using Nitrogen-Doped Carbon Nanotubes for Reductive Carbonylation of Nitroaromatics to Benzimidazolinone and Phenyl Urea. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48700-48711. [PMID: 33064441 DOI: 10.1021/acsami.0c15396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbonylation of nitroaromatics with CO is extensively investigated with efficient but precious group 8-10 metal-based catalysts for the productions of both industrially and academically important chemicals such as isocyanates, formamides, carbamates, ureas and several types of heterocyclic compounds. Herein, we report that rationally designed nitrogen-doped carbon nanotubes (N-CNTs) exhibit catalytic activity toward CO activation for carbonylation of nitroaromatics to benzimidazolinones and ureas. Under the optimal conditions, N-CNT-promoted intramolecular carbonylation of 2-nitroaniline (1a) with CO leads to formation of 1,3-dihydro-2H-benzo[d]imidazol-2-one in 90% yield. Moreover, an intermolecular carbonylation of nitrobenzene and aniline with CO in the presence of the N-CNT gives 70% yield of N,N'-diphenylurea. The N-CNT is also applicable to various benzimidazolinones and phenyl ureas; moreover, it can be readily reused at least 9 times for the carbonylation. The theoretical investigation based on density functional theory calculations indicates that the graphitic N of the N-CNT plays a crucial step in the 1a reduction with CO. The correlation between the structural defect and catalytic performance of the N-CNT reveals an enhanced catalytic activity of the N-CNT with its increased structural defects. This research thus represents a major breakthrough in CO activation for nitroaromatic carbonylation with environmental-friendly, low-cost, and carbon-based catalysts as a potential alternative to expensive and scarce noble-metal-based catalysts.
Collapse
Affiliation(s)
- Qiumin Wu
- State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, No. 855, East Xingye Avenue, Panyu District, Guangzhou 511443, China
| | - Jinzhu Chen
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, No. 855, East Xingye Avenue, Panyu District, Guangzhou 511443, China
| | - Zhen Liu
- State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
11
|
Li Z, Yu Z, Luo X, Li C, Wu H, Zhao W, Li H, Yang S. Recent advances in liquid hydrosilane-mediated catalytic N-formylation of amines with CO 2. RSC Adv 2020; 10:33972-34005. [PMID: 35519060 PMCID: PMC9056842 DOI: 10.1039/d0ra05858k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/08/2020] [Indexed: 02/03/2023] Open
Abstract
Carbon dioxide is an ideal raw material for the synthesis of complex organic compounds because of its rich, non-toxic, and good physical properties. It is of great significance to transform CO2 into valuable fine chemicals and develop a green sustainable cycle of carbon surplus. Based on hydrosilane as a reducing agent, this work summarizes the recent applications of reductive amidation of CO2 using different catalysts such as organocatalysts, ionic liquids (ILs), salts, transition metal complexes, and solvents. The main factors affecting the reductive amidation of CO2 and the possible reaction mechanism are discussed. Moreover, the future orientation and catalytic systems of the formylation of amines with CO2 and hydrosilane are prospected. This review depicts different types of catalyst systems developed for upgrading of amines and carbon dioxide into N-formylated products in the presence of hydrosilane, with attention on reaction mechanism and process optimization.![]()
Collapse
Affiliation(s)
- Zhengyi Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| | - Zhaozhuo Yu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| | - Xiaoxiang Luo
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| | - Chuanhui Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| | - Wenfeng Zhao
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171.,Technical University of Denmark, Centre for Catalysis and Sustainable Chemistry, Department of Chemistry Kemitorvet, Building 207 2800 Kgs. Lyngby Denmark
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang 550025 Guizhou China +86-851-8829-2170 +86-851-8829-2171
| |
Collapse
|
12
|
Chen M, Wu Q, Lin C, Zhang J, Zhao J, Chen J, Xu Y. Chemical Fixation of CO 2 Using Highly Dispersed Cu on Hierarchically Porous N-Doped Carbon. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40236-40247. [PMID: 32805818 DOI: 10.1021/acsami.0c08001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemical transformation of carbon dioxide (CO2) into fine chemicals such as oxazolidinones and carbamates is mainly reported using transition-metal complexes as homogeneous catalysts. Herein, we demonstrate that a heterogeneous catalyst of highly dispersed Cu (Cu/NHPC) supported on hierarchically porous N-doped carbon (NHPC) can efficiently promote CO2 fixations to oxazolidinones and β-oxopropylcarbamates. The obtained NHPC, assembled by ultrathin nitrogen-doped carbon nanosheets with a three-dimensional (3D) structure, is readily prepared by pyrolysis of a nitrogen-containing polymer gel (NPG) in the presence of an activator of potassium bicarbonate (KHCO3). The resulting NHPC shows specific Brunauer-Emmet-Teller (BET) surface areas up to 2054 m2 g-1 with a mean micro/mesopore size of 0.55/3.2 nm and a broad macropore size distribution from 50 to 230 nm. The Cu/NHPC can efficiently promote three-component coupling of CO2, amines, and propargyl alcohols for syntheses of various oxazolidinones and β-oxopropylcarbamates with yields up to 99% and a wide substrate scope. Moreover, the Cu/NHPC exhibits excellent recyclability in CO2-to-oxazolidinone transformation during nine-time recycling. The research thus develops an NHPC-based heterogeneous Cu catalyst for green transformation of CO2.
Collapse
Affiliation(s)
- Mingzhe Chen
- State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, No. 855, East Xingye Avenue, Panyu District, Guangzhou 511443, China
| | - Qiumin Wu
- State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chuncheng Lin
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, No. 855, East Xingye Avenue, Panyu District, Guangzhou 511443, China
| | - Jiarui Zhang
- State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, No. 855, East Xingye Avenue, Panyu District, Guangzhou 511443, China
| | - Jigang Zhao
- State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jinzhu Chen
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, No. 855, East Xingye Avenue, Panyu District, Guangzhou 511443, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
13
|
P S, Mandal SK. From CO 2 activation to catalytic reduction: a metal-free approach. Chem Sci 2020; 11:10571-10593. [PMID: 34094313 PMCID: PMC8162374 DOI: 10.1039/d0sc03528a] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Over exploitation of natural resources and human activities are relentlessly fueling the emission of CO2 in the atmosphere. Accordingly, continuous efforts are required to find solutions to address the issue of excessive CO2 emission and its potential effects on climate change. It is imperative that the world looks towards a portfolio of carbon mitigation solutions, rather than a single strategy. In this regard, the use of CO2 as a C1 source is an attractive strategy as CO2 has the potential to be a great asset for the industrial sector and consumers across the globe. In particular, the reduction of CO2 offers an alternative to fossil fuels for various organic industrial feedstocks and fuels. Consequently, efficient and scalable approaches for the reduction of CO2 to products such as methane and methanol can generate value from its emissions. Accordingly, in recent years, metal-free catalysis has emerged as a sustainable approach because of the mild reaction conditions by which CO2 can be reduced to various value-added products. The metal-free catalytic reduction of CO2 offers the development of chemical processes with low cost, earth-abundant, non-toxic reagents, and low carbon-footprint. Thus, this perspective aims to present the developments in both the reduction and reductive functionalization chemistry of CO2 during the last decade using various metal-free catalysts.
Collapse
Affiliation(s)
- Sreejyothi P
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| |
Collapse
|
14
|
Pramudita RA, Manaka Y, Motokura K. A Resin-Supported Formate Catalyst for the Transformative Reduction of Carbon Dioxide with Hydrosilanes. Chemistry 2020; 26:7937-7945. [PMID: 32315104 DOI: 10.1002/chem.202001605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Indexed: 01/03/2023]
Abstract
A heterogeneous formate anion catalyst for the transformative reduction of carbon dioxide (CO2 ) based on a polystyrene and divinylbenzene copolymer modified with alkylammonium formate was prepared from a widely available anion exchange resin. The catalyst preparation was easy and the characterization was carried out by using elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and solid-state 13 C cross-polarization/magic-angle spinning nuclear magnetic resonance (13 C CP/MAS NMR) spectroscopy. The catalyst displayed good catalytic activity for the direct reduction of CO2 with hydrosilanes, tunably yielding silylformate or methoxysilane products depending on the hydrosilanes used. The catalyst was also active for the reductive insertion of CO2 into both primary and secondary amines. The catalytic activity of the resin-supported formate can be predicted from the FTIR spectra of the catalyst, probably because of the difference in the ionic interaction strength between the supported alkylammonium cations and formate anions. The ion pair density is thought to influence the catalytic activity, as shown by the elemental and solid-state 13 C NMR analyses.
Collapse
Affiliation(s)
- Ria Ayu Pramudita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan
| | - Yuichi Manaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan.,Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiikedai, Koriyama, Fukushima, 963-0298, Japan
| | - Ken Motokura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan.,PRESTO, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| |
Collapse
|
15
|
Chen X, Shen Q, Li Z, Wan W, Chen J, Zhang J. Metal-Free H 2 Activation for Highly Selective Hydrogenation of Nitroaromatics Using Phosphorus-Doped Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:654-666. [PMID: 31808342 DOI: 10.1021/acsami.9b17582] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We reported that phosphorus-doped carbon nanotubes (P-CNTs), showing metal-like properties, can efficiently promote metal-free hydrogenation of nitrobenzene (1a) to aniline (2a) using molecular hydrogen (H2) as a reducing reagent under very mild conditions with a reaction temperature of only 50 °C. The kinetics of 1a hydrogenation over P-CNT reveals that the hydrogenation rate of 1a is a first-order dependence on the H2 pressure and the P-CNT loading level, and a zero-order dependence on 1a concentration, demonstrating the rate-determining step of H2 adsorption and activation over P-CNT. The activation energy of P-CNT-catalyzed 1a hydrogenation is 43 ± 3 kJ mol-1 with the turnover frequency around 3.60 ± 0.12 h-1 at 50 °C. In addition to 1a, the general applicability of the P-CNT-promoted metal-free hydrogenation process is further demonstrated by applying various functionalized nitroaromatics with wide industrial interest. The P-CNT shows both excellent yields and selectivities to hydrogenation with respect to reducible, labile, and strong leaving groups on the nitroaromatics molecules. The stability and reusability of the P-CNT demonstrate up to eight-time recycling without evident loss of activity and selectivity. In addition to hydrogenation, metal-free catalytic transfer hydrogenation of 1a is achieved with P-CNT using diverse hydrogen sources, including hydrazine hydrate (N2H4·H2O), carbon monoxide/water (CO/H2O), and formic acid/triethylamine (HCOOH/Et3N).
Collapse
Affiliation(s)
- Xuehua Chen
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Qiujuan Shen
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Zhijing Li
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Weihao Wan
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Jinzhu Chen
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , China
| | - Jiayan Zhang
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| |
Collapse
|