1
|
Martín N, Cirujano FG, García-Verdugo E, Llorca J, Del Río E, Jiménez-Morales I, Bogeat-Barroso A, López-Maya E, Álvarez MG. Tuning Ni-Pyrazolate Frameworks by Post-Synthetic Fe-Incorporation for Oxidase-Mimicking H 2 O 2 Activation. Chempluschem 2023; 88:e202300447. [PMID: 37792160 DOI: 10.1002/cplu.202300447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023]
Abstract
The introduction of iron ionic sites by metal exchange of defective homometallic nickel pyrazolate frameworks generates non-precious, Earth-abundant, first-row heterometallic Fe/Ni-pyrazolate frameworks. The Fe incorporation at the Ni nodes of the framework allows to control the hydrogen peroxide activation, minimizing its decomposition and O2 liberation, occurring at the homometallic Ni nodes. The generation of Fe-OH reactive oxygen species at the heterometallic Fe/Ni nodes is demonstrated by the higher activity in the proof-of-concept oxidation of 1-phenylethanol to acetophenone in an aqueous medium.
Collapse
Affiliation(s)
- Nuria Martín
- Department of Inorganic and Organic Chemistry Universitat Jaume I., Av. Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Spain
| | - Francisco G Cirujano
- Department of Inorganic and Organic Chemistry Universitat Jaume I., Av. Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Spain
| | - Eduardo García-Verdugo
- Department of Inorganic and Organic Chemistry Universitat Jaume I., Av. Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Spain
| | - Jordi Llorca
- Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Enrique Del Río
- Department of Inorganic Chemistry, University of Salamanca, GIR-QUESCAT Group, Pl. Caídos, s/n, 37008, Salamanca, Spain
| | - Ignacio Jiménez-Morales
- Department of Inorganic Chemistry, University of Salamanca, GIR-QUESCAT Group, Pl. Caídos, s/n, 37008, Salamanca, Spain
| | - Adrián Bogeat-Barroso
- Department of Inorganic Chemistry, University of Salamanca, GIR-QUESCAT Group, Pl. Caídos, s/n, 37008, Salamanca, Spain
| | - Elena López-Maya
- Department of Inorganic Chemistry, University of Salamanca, GIR-QUESCAT Group, Pl. Caídos, s/n, 37008, Salamanca, Spain
| | - Mayra G Álvarez
- Department of Inorganic Chemistry, University of Salamanca, GIR-QUESCAT Group, Pl. Caídos, s/n, 37008, Salamanca, Spain
| |
Collapse
|
2
|
Yaghubzadeh M, Alavinia S, Ghorbani-Vaghei R. A sustainable protocol for selective alcohols oxidation using a novel iron-based metal organic framework (MOF-BASU1). RSC Adv 2023; 13:24639-24648. [PMID: 37601596 PMCID: PMC10433720 DOI: 10.1039/d3ra03058j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
The selective oxidation of active and inactive alcohol substrates is a highly versatile conversion that poses a challenge in controlling the functionality and adjustments on MOFs. On the other hand, it offers an attractive opportunity to expand their applications in designing the next generation of catalysts with improved performance. Herein, a novel iron-based MOF containing sulfonamide (MOF-BASU1) has been fabricated by the reaction of 1,3-benzene disulfonylchloride linker and FeCl3·6H2O. Based on the results, the active surface area of the synthesized MOF is large, which highlights its unique catalytic activity. Optimum conditions were reached after 0.5-2 h, with 15 mg loading of the synthesized MOF under optimal conditions. Furthermore, the turnover frequency was 18-77.6 h-1, which is comparable to values previously reported for this process. Overall, the high catalytic activity observed for MOF-BASU1 might be because of the obtained high surface area and the Lewis acidic Fe nodes. Furthermore, the MOF-BASU1 revealed a remarkable chemoselectivity for aldehydes in the presence of aliphatic alcohols. Overall, the high product yields, facile recovery of nanocatalysts, short reaction times, and broad substrate range make this process environmentally friendly, practical, and economically justified.
Collapse
Affiliation(s)
- Mahtab Yaghubzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98-8138380647
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98-8138380647
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98-8138380647
| |
Collapse
|
3
|
Adam MSS, Elsawy H, Sedky A, Makhlouf MM, Taha A. Catalytic potential of sustainable dinuclear (Cu2+ and ZrO2+) metal organic incorporated frameworks with comprehensive biological studies. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Comprehensive catalytic and biological studies on new designed oxo- and dioxo-metal (IV/VI) organic arylhydrazone frameworks. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Adam MSS, Abdel-Rahman OS, Makhlouf MM. Metal ion induced changes in the structure of Schiff base hydrazone chelates and their reactivity effect on catalytic benzyl alcohol oxidation and biological assays. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Wang Y, Wang J, Wei J, Wang C, Wang H, Yang X. Catalytic Mechanisms and Active Species of Benzene Hydroxylation Reaction System Based on Fe-Based Enzyme-Mimetic Structure. Catal Letters 2022. [DOI: 10.1007/s10562-022-04238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Zhao L, Cai W, Ji G, Wei J, Du Z, He C, Duan C. Anthraquinone-Based Metal-Organic Frameworks as a Bifunctional Photocatalyst for C-H Activation. Inorg Chem 2022; 61:9493-9503. [PMID: 35696346 DOI: 10.1021/acs.inorgchem.2c00441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) have gained attention as multifunctional catalytic platforms, allowing us to gain important insights into synergistically activating both C-H bonds and oxygen for improving oxidation. Herein, by ingenious incorporation of anthraquinone, we report an anthraquinone-based MOF as a bifunctional heterogeneous photocatalytic platform to simultaneously activate inert C(sp3)-H bonds and oxygen for C-H bond oxidation. Making use of the rigid framework with the fixation and isolation effect, both a great chemical stability and bifunctional synergistic photocatalytic effects were obtained through the immobilization of anthraquinone into a MOF. Importantly, while decorating two carboxyl groups on anthraquinone, the carbonyl groups of anthraquinone photosensitizers were not involved in coordinating the self-assembly and orderly arranged on the wall of channels that were constructed through a π-π interaction between the anthraquinone moieties in the adjacent layers, which was beneficial to form and stabilize the excited-state radical intermediates in the molecule-fenced channels, and the close proximity between the catalytic sites and the substrates to abstract a hydrogen atom from the substrate through the hydrogen atom transfer process aimed at activating the inertness of C-H bonds. Moreover, high-density-distributed anthraquinone dyes in the confined channels would activate oxygen to form singlet oxygen (1O2) through an energy transfer pathway, further promoting inert C(sp3)-H bond oxidation efficiency. Under visible light irradiation, this anthraquinone-based MOF was successfully applied to explore activation and oxidation of a series of substrates containing benzylic C(sp3)-H bonds in the presence of air or oxygen to produce the corresponding carbonyl products. This bifunctional photocatalytic platform based on a heterogeneous MOF provides an available catalytic avenue to develop a scalable and sustainable synthetic strategy using green and sustainable oxygen as the potent oxidant.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
8
|
Recent advances in the application of metal organic frameworks using in advanced oxidation progresses for pollutants degradation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Kachhap P, Chaudhary N, Haldar C. Solvent‐free oxidation of straight‐chain aliphatic primary alcohols by polymer‐grafted vanadium complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Payal Kachhap
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Nikita Chaudhary
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Chanchal Haldar
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| |
Collapse
|
10
|
Long ZH, Luo D, Wu K, Chen ZY, Wu MM, Zhou XP, Li D. Superoxide Ion and Singlet Oxygen Photogenerated by Metalloporphyrin-Based Metal-Organic Frameworks for Highly Efficient and Selective Photooxidation of a Sulfur Mustard Simulant. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37102-37110. [PMID: 34333980 DOI: 10.1021/acsami.1c08840] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The exploration of highly efficient materials for the degradation of chemical warfare agents has been a longstanding task for preventing human exposure. Herein, we report a series of metal-organic frameworks (MOFs) M-TCPP-La based on metallo-tetra(4-carboxyphenyl)porphyrin and LaIII, which were applied to selectively oxidize 2-chloroethyl ethyl sulfide (CEES, a sulfur mustard simulant) as heterogeneous photocatalysts. After irradiation from a commercial blue light-emitting diode (LED), both superoxide ion and singlet oxygen were generated by M-TCPP-La and involved in selective oxidization of CEES to 2-chloroethyl ethyl sulfoxide (CEESO). Notably, a very short half lifetime (2.5 min) was achieved using Fe-TCPP-La as the photocatalyst. In comparison to currently utilizing singlet oxygen and hydrogen peroxide as oxidizing agents, this work employing both singlet oxygen and superoxide ion represents a new and effective strategy of detoxification of mustard gas.
Collapse
Affiliation(s)
- Zi-Hao Long
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Kun Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zi-Ye Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Ming-Min Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
11
|
Li YY, Luo D, Wu K, Zhou XP. Metal-organic frameworks with the gyroid surface: structures and applications. Dalton Trans 2021; 50:4757-4764. [PMID: 33721005 DOI: 10.1039/d0dt04234j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gyroid materials have received considerable attention from scientists due to their beautiful structures and advanced functions. On the other side, metal-organic frameworks are inorganic-organic hybrid crystalline porous materials with atomic precision, and can provide good structural models and rich topologies for gyroid materials. In this review, we will briefly introduce the structures of gyroid metal-organic frameworks and their topologies. In addition, their applications in gas adsorption, catalysis, sensors, and luminescent materials are also discussed in detail.
Collapse
Affiliation(s)
- Yan Yan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, P. R. China
| | | | | | | |
Collapse
|
12
|
Molecular Cage Promoted Aerobic Oxidation or Photo-Induced Rearrangement of Spiroepoxy Naphthalenone. Catalysts 2021. [DOI: 10.3390/catal11040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Herein, we report a Pd4L2-type molecular cage (1) and catalyzed reactions of spiroepoxy naphthalenone (2) in water, where selective formation of 2-(hydroxymethyl)naphthalene-1,4-dione (3) via aerobic oxidation, or 1-hydroxy-2-naphthaldehyde (4) via photo-induced rearrangement under N2 have been accomplished. Encapsulation of four molecules of guest 2 within cage 1, i.e., (2)4⊂1, has been confirmed by NMR, and a final host-guest complex of 3⊂1 has also been determined by single crystal X-Ray diffraction study. While the photo-induced ring-opening isomerization from 2 to 4 are known, appearance of charge-transfer absorption on the host-guest complex of (2)4⊂1 allows low-power blue LEDs irradiation to promote this process.
Collapse
|
13
|
Huang J, Yan Z, Qiu P, Mo Y, Cao Q, Li Q, Huo L, Zhao L. A New Coumarin-Acridone Compound as a Fluorescence Probe for Fe 3+ and Its Application in Living Cells and Zebrafish. Molecules 2021; 26:molecules26082115. [PMID: 33917054 PMCID: PMC8067698 DOI: 10.3390/molecules26082115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
A new coumarin-acridone fluorescent probe S was designed and synthesized, and the structure was confirmed with 1H/13C NMR spectrometry, single-crystal X-ray diffraction, and high-resolution mass spectrometry. This probe has high sensitivity and selectivity for Fe3+ over other testing metal ions at 420 or 436 nm in acetonitrile-MOPS (3-Morpholinopropanesulfonic Acid) buffer solution (20.0 μM, pH = 6.9, 8:2 (v/v)). Under physiological conditions, the probe displayed satisfying time stability with a detection limit of 1.77 µM. In addition, probe S was successfully used to detect intracellular iron changes through a fluorescence-off mode, and the imaging results of cells and zebrafish confirmed their low cytotoxicity and satisfactory cell membrane permeability, as well as their potential biological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lini Huo
- Correspondence: (L.H.); (L.Z.); Tel.: +86-07-71495-3513 (L.H. & L.Z.)
| | - Lichun Zhao
- Correspondence: (L.H.); (L.Z.); Tel.: +86-07-71495-3513 (L.H. & L.Z.)
| |
Collapse
|
14
|
Qin N, Pan A, Yuan J, Ke F, Wu X, Zhu J, Liu J, Zhu J. One-Step Construction of a Hollow Au@Bimetal-Organic Framework Core-Shell Catalytic Nanoreactor for Selective Alcohol Oxidation Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12463-12471. [PMID: 33657796 DOI: 10.1021/acsami.0c20445] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hollow core-shell catalytic nanoreactors have received tremendous attention due to their high mass transfer in catalysis applications. Herein, we present a novel type of well-arranged, hollow core-shell nanoreactors featured with a bimetallic porous Zn/Ni-MOF-2 shell and a tiny Au nanoparticle core. The well-designed hollow Au@Zn/Ni-MOF-2 nanoreactors were constructed through the strategy of a facile one step from a rare crystal-structure transformation without any additional template. These nanoreactors exhibit outstanding multifunctional catalysis for a broad range of alcohol oxidation under the green oxidant environment. Moreover, such hollow nanoreactors show excellent recyclability toward the selective alcohol oxidation. These findings might provide a promising platform for a general construct of various metal-organic framework-based hollow core-shell nanostructures and further highly augmented catalytic applications.
Collapse
Affiliation(s)
- Nianqiao Qin
- Department of Applied Chemistry and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, P. R. China
| | - An Pan
- Department of Applied Chemistry and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Jun Yuan
- Department of Applied Chemistry and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Fei Ke
- Department of Applied Chemistry and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xiaoyan Wu
- Department of Applied Chemistry and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Jing Zhu
- Department of Applied Chemistry and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory and Department of Chemical Physics, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
15
|
Mancuso JL, Fabrizio K, Brozek CK, Hendon CH. On the limit of proton-coupled electronic doping in a Ti(iv)-containing MOF. Chem Sci 2021; 12:11779-11785. [PMID: 34659715 PMCID: PMC8442679 DOI: 10.1039/d1sc03019a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
TiIV-containing metal–organic frameworks are known to accumulate electrons in their conduction bands, accompanied by protons, when irradiated in the presence of alcohols. The archetypal system, MIL-125, was recently shown to reach a limit of 2e− per Ti8 octomeric node. However, the origin of this limit and the broader applicability of this unique chemistry relies not only on the presence of TiIV, but also access to inorganic inner-sphere Lewis basic anions in the MOF nodes. Here, we study the loading of protons and electrons in MIL-125, and assess the thermodynamic limit of doping these materials. We find that the limit is determined by the reduction potential of protons: in high charging regimes the MOF exceeds the H+/H2 potential. Generally, we offer the design principle that inorganic anions in MOF nodes can host adatomic protons, which may stabilize meta-stable low valent transition metals. This approach highlights the unique chemistry afforded by MOFs built from inorganic clusters, and provides one avenue to developing novel catalytic scaffolds for hydrogen evolution and transfer hydrogenation. Photo-promoted doping of MIL-125 is limited by the potential of MOF-bound protons exceeding the hydrogen evolution reaction.![]()
Collapse
Affiliation(s)
- Jenna L. Mancuso
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Kevin Fabrizio
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Carl K. Brozek
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Christopher H. Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
16
|
Panza N, Biase A, Rizzato S, Gallo E, Tseberlidis G, Caselli A. Catalytic Selective Oxidation of Primary and Secondary Alcohols Using Nonheme [Iron(III)(Pyridine‐Containing Ligand)] Complexes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicola Panza
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| | - Armando Biase
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| | - Silvia Rizzato
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| | - Emma Gallo
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| | - Giorgio Tseberlidis
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
- Department of Materials Science and Solar Energy Research Center (MIB‐SOLAR) University of Milano‐Bicocca Via Cozzi 55 20125 Milano Italy
| | - Alessandro Caselli
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| |
Collapse
|
17
|
Engineered Superparamagnetic Core–Shell Metal–Organic Frame-Work (Fe3O4@Ni–Co-BTC NPs) with Enhanced Photocatalytic Activity for Selective Aerobic Oxidation of Alcohols Under Solar Light Irradiation. Catal Letters 2020. [DOI: 10.1007/s10562-020-03291-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|