1
|
Manikandan VS, George K, Thirumurugan A, Govindaraj T, Harish S, Archana J, Navaneethan M. A Bi 2Te 3 topological insulator/carbon nanotubes hybrid composites as a new counter electrode material for DSSC and NIR photodetector application. J Colloid Interface Sci 2025; 678:549-559. [PMID: 39214007 DOI: 10.1016/j.jcis.2024.08.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Two-dimensional layered bismuth telluride (Bi2Te3), a prominent topological insulator, has garnered global scientific attention for its unique properties and potential applications in optoelectronics and electrochemical devices. Notably, there is a growing emphasis on improving photon-to-electron conversion efficiency in dye-sensitized solar cells (DSSCs), prompting the exploration of alternatives to noble metal catalysts like platinum (Pt). This study presents the synthesis of Bi2Te3 and its hybrid nanostructure with single-wall carbon nanotubes (SWCNT) via a straightforward hydrothermal process. The research unveils a novel application for the Bi2Te3-SWCNT hybrid structure, serving as a counter electrode in platinum-free DSSCs, facilitating the conversion of triiodide (I3-) to iodide (I-) and functioning as an active electrode material in a photodetector (n-Bi2Te3-SWCNT/p-Si). The resulting DSSC employing the Bi2Te3-SWCNT hybrid counter electrode achieves a power conversion efficiency (PCE) of 4.2 %, a photocurrent density of 10.5 mA/cm2, a fill factor (FF) of 62 %, and superior charge transfer kinetics compared to pristine Bi2Te3 based counter electrode (PCE 2.1 %, FF 34 %). Additionally, a spin coating technique enhances the performance of the n-Bi2Te3-SWCNT/p-Si photodetector, yielding a responsivity of 2.2 AW-1, detectivity of 1.2 × 10-3 and enhanced external quantum efficiency. These findings demonstrate that the newly developed Bi2Te3-SWCNT heterostructure enhances interfacial charge transport, electrocatalytic performance in DSSCs, and overall photodetector performance.
Collapse
Affiliation(s)
- V S Manikandan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India; Center of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - Kesiya George
- School for Advanced Research in Petrochemicals, Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar 751024, India
| | - Arun Thirumurugan
- Sede Vallenar, Universidad de Atacama, Costanera 105, Vallenar 1612178, Chile
| | - T Govindaraj
- Nanotechnology Research Centre (NRC), SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India
| | - S Harish
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India; Center of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - J Archana
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India; Center of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - M Navaneethan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India; Nanotechnology Research Centre (NRC), SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India; Center of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| |
Collapse
|
2
|
Muhammad N, Muzaffar MU, Ding ZJ. Theoretical prediction and characterization of novel two-dimensional ternary tetradymite compounds La 2X 2Y (X = I, Br, Cl; Y = Ge, Te) as anode materials for metal-ion batteries. Phys Chem Chem Phys 2023; 25:29585-29593. [PMID: 37877302 DOI: 10.1039/d3cp02920d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Tetradymite compounds, such as Bi2Te3, crystallizing in rhombohedral structures have triggered tremendous research interest from the scientific community because of their intriguing properties. Herein, using the state-of-the-art first-principles calculations, we identify that La2X2Y (X = I, Br, Cl; Y = Ge, Te) nanosheets exhibit a ternary tetradymite-type structure with extraordinary electrical and electrochemical properties. It is first demonstrated that the layered La2X2Y compounds exhibit weak interlayer coupling with cleavage energies in the range of ∼0.28-0.38 J m-2, allowing the ready separation of monolayers that can be synthesized by mechanical exfoliation from their bulk counterparts. Next, we predict that La2X2Ge nanosheets exhibit a semiconducting nature, and upon physical realistic strain, a Dirac cone can be realized. These findings can be exploited in the transport properties. Furthermore, we comprehensively investigated the electrochemical properties of the predicted systems to evaluate their potential use in metal-ion (Li/Na) batteries. Our detailed analyses reveal that the Li (Na) adatoms are sufficiently mobile on the surface of the studied systems. For instance, the binding energy for the Li (Na) adatom on La2I2Ge is -2.24(-1.79) eV with a diffusion barrier of as small as ∼0.31(0.20) eV. Subsequently, the maximum theoretical specific capacity for Li (Na) reaches as high as 887(1064) mA h g-1, which can be attributed to a much higher storage capacity compared to previously identified 2D anode materials. These findings substantiate that the predicted nanosheets could be synthesized to explore their potential applications in future metal-ion batteries.
Collapse
Affiliation(s)
- Nisar Muhammad
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.
| | - M U Muzaffar
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale (HFNL), and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Z J Ding
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.
| |
Collapse
|
3
|
Li X, Yu H, Liu Z, Huang J, Ma X, Liu Y, Sun Q, Dai L, Ahmad S, Shen Y, Wang M. Progress and Challenges Toward Effective Flexible Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:206. [PMID: 37651002 PMCID: PMC10471566 DOI: 10.1007/s40820-023-01165-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/15/2023] [Indexed: 09/01/2023]
Abstract
The demand for building-integrated photovoltaics and portable energy systems based on flexible photovoltaic technology such as perovskite embedded with exceptional flexibility and a superior power-to-mass ratio is enormous. The photoactive layer, i.e., the perovskite thin film, as a critical component of flexible perovskite solar cells (F-PSCs), still faces long-term stability issues when deformation occurs due to encountering temperature changes that also affect intrinsic rigidity. This literature investigation summarizes the main factors responsible for the rapid destruction of F-PSCs. We focus on long-term mechanical stability of F-PSCs together with the recent research protocols for improving this performance. Furthermore, we specify the progress in F-PSCs concerning precise design strategies of the functional layer to enhance the flexural endurance of perovskite films, such as internal stress engineering, grain boundary modification, self-healing strategy, and crystallization regulation. The existing challenges of oxygen-moisture stability and advanced encapsulation technologies of F-PSCs are also discussed. As concluding remarks, we propose our viewpoints on the large-scale commercial application of F-PSCs.
Collapse
Affiliation(s)
- Xiongjie Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Haixuan Yu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Zhirong Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Junyi Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Xiaoting Ma
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Yuping Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Qiang Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Letian Dai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Shahzada Ahmad
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, University of Basque Country Science Park, 48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Yan Shen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China.
| |
Collapse
|