1
|
Upma, Boora K, Gupta R, Gupta R. Visible Light Catalyzed Oxidative Reactions Using Silver-Based Metal-Organic Frameworks Based on Metalloligands. Inorg Chem 2025. [PMID: 40381210 DOI: 10.1021/acs.inorgchem.5c01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Photocatalysis plays a crucial role in modern organic synthesis by enabling efficient transformations under mild conditions and reducing the need for harmful reagents. Its ability to harness visible light for sustainable chemical processes makes it an attractive alternative to conventional methods. In this study, we have utilized two silver-based MOFs, incorporating two different Co3+-metalloligands, as photocatalysts for oxidation reactions and oxidative coupling processes. The reactions include the oxidation of phenylboronic acids to phenols and the oxidative coupling of amines and anilines to imines and azo compounds. Ag-MOFs demonstrated significant visible light absorption and excellent chemical stability, with superoxide radicals identified as the primary reactive oxygen species. The photocatalytic performance is supported by band gap energy calculation and photophysical studies, including electrochemical impedance, electron paramagnetic resonance, and photoluminescence spectroscopies. The photocatalytic performance of an Ag-MOF was critically influenced by its architecture, including the presence of argentophilic interactions. Such a feature not only enhanced its structural stability but also improved the light absorption, a more significant number of active sites, better charge separation, and a remarkable photocatalytic outcome.
Collapse
Affiliation(s)
- Upma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Kusum Boora
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ruchika Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
2
|
Shirvani M, Zhang T, Gu Y, Hosseini-Sarvari M. Green Synthesis of Nano-Sized Multiflower-like Fe 3O 4@SiO 2/ L-Tryptophan from Natural Resources and Agricultural Waste: A Photo-Switchable Oxidation Catalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10647-10667. [PMID: 40238711 DOI: 10.1021/acs.langmuir.5c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
This study presents a novel, eco-friendly, and cost-effective magnetic hybrid photocatalyst, Fe3O4@SiO2/L-tryptophan, synthesized through a scalable three-step green approach using natural and agricultural waste. The Fe3O4@SiO2/L-tryptophan nanoparticle features a core-shell structure with a high surface area (63.14 m2/g), strong visible-light absorption (λ > 448 nm), a narrow band gap (1.84 eV), and superparamagnetic properties (22 emu/g), enabling efficient separation and reusability. Characterization techniques (XRD, XPS, FT-IR, FE-SEM, HR-TEM, UV-vis DRS, TGA, BET, and EIS) confirmed its structural stability, charge separation, and interfacial charge transport. The photocatalyst achieved 82.1% oxidative desulfurization of dibenzothiophene (DBT) and high conversion rates for toluene (85%) and styrene (90%) under visible light using O2 as an oxidant. It retained over 85% activity after five cycles, demonstrating excellent durability. For the first time, all components are derived from natural sources: Fe3O4 from sorghum seed extract, SiO2 from rice husk, and L-tryptophan for enhanced light absorption and charge separation. This sustainable synthesis reduces chemical waste and energy consumption, setting a new benchmark for environmentally friendly photocatalysts.
Collapse
Affiliation(s)
- Maryam Shirvani
- Nano Photocatalysis Lab., Department of Chemistry, College of Science, Shiraz University, Shiraz 71946-84795, Iran
| | - Tianjian Zhang
- Institute of Physical Chemistry and Industrial Catalysis, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan 430074, P. R. China
| | - Yanlong Gu
- Institute of Physical Chemistry and Industrial Catalysis, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan 430074, P. R. China
| | - Mona Hosseini-Sarvari
- Nano Photocatalysis Lab., Department of Chemistry, College of Science, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
3
|
Ma XL, Ma LH, Guo S, Zhang ZM, Lu TB. Identifying the Key Photosensitizing Factors over Metal-Organic Frameworks for Selective Control of 1O 2 and O 2⋅ - Generation. Angew Chem Int Ed Engl 2025; 64:e202423157. [PMID: 39949192 DOI: 10.1002/anie.202423157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
The reaction pathway, product selectivity and catalytic efficiency of photo-oxidation are highly dependent on the specific reactive oxygen species (ROS), such as singlet oxygen (1O2) and superoxide (O2⋅-), generated via the sensitization of O2 by photosensitizers. Studies on uncovering the role of photosensitizing factors on the selective control of 1O2 and O2⋅- generation are significant but remain underexplored. Here, we constructed a photosensitizing metal-organic framework molecular platform (UiO-1-UiO-4) by elaborately engineering Ir(III) complex ligands with pyrenyl group for modulating photosensitizing factors and elucidating their impact on ROS generation. Impressively, the ratios of 1O2 and O2⋅- generation varied from 0 : 100 for UiO-1 to 94 : 6 for UiO-4 by modulating photosensitizing factors. UiO-2 and UiO-4 were respectively immobilized in a continuous-flow reactor, achieving gram-scale photosynthesis of phenol and juglone with high purity (>94 %) via O2⋅- and 1O2 pathway, respectively. Investigations reveal that UiO-4 with ligand localized excited state and long excited state lifetime contributed to triggering energy transfer to afford 1O2, whereas UiO-1 with charge-transfer state and negative reduction potential facilitates charge transfer to produce O2⋅-. This work offers a novel insight into regulating ROS generation by modulating the photosensitizing factors at the molecular level.
Collapse
Affiliation(s)
- Xiao-Liang Ma
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Li-Hua Ma
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
4
|
Wei LQ, Li CL, Wen CJ, Lai HF. Dual-linker Ir-Zr-MOF shows improved porosity to enhance aqueous sulfide photooxidation. Dalton Trans 2025; 54:1986-1993. [PMID: 39676712 DOI: 10.1039/d4dt02649g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The hetero photooxidation of sulfide under aqueous conditions is of great importance in the green synthesis of sulfoxide. This process requires a type of solid photocatalyst with the properties of high porosity and water stability, as well as photosensitivity. Herein, a stable Ir-Zr-MOF material (compound 1) with high porosity is assembled from two linear linkers of a 2-phenylquinoline-4-carboxylic acid-Ir(III) complex (Irphen) and 4,4'-stilbenedicarboxylic acid (H2SDC), and a Zr6 cluster. 1 is isostructural to JLU-Liu34 with a composition of [Zr6O4.78(OH)3.22(SDC)3.82(Irphen)0.78TFA2.8]·2.8MeOH and permanent porosity with a BET surface area of 1507 m2 g-1. 1 exhibits improved activity for the photocatalytic aerobic oxidation of sulfide to sulfoxide via blue light irradiation under aqueous conditions. Mechanism studies demonstrate that a superoxide radical is the reactive oxygen species in the sulfide photooxidation. 1 can be readily recycled and reused at least 5 times without loss of catalytic activity. This work not only provides a good strategy for the assembly of an Ir(III) complex into MOFs but also an efficient method for the green synthesis of sulfoxide.
Collapse
Affiliation(s)
- Lian-Qiang Wei
- College of Chemistry and Bio-Engineering, Hechi University, Hechi, P. R. China.
| | - Cheng-Li Li
- College of Chemistry and Bio-Engineering, Hechi University, Hechi, P. R. China.
| | - Chun-Jian Wen
- College of Chemistry and Bio-Engineering, Hechi University, Hechi, P. R. China.
| | - Hong-Fang Lai
- College of Chemistry and Bio-Engineering, Hechi University, Hechi, P. R. China.
| |
Collapse
|
5
|
Ji M, Liu T, Liu N, Hao H, Li Y, Dou J, Duan J, Wang S. Temperature-Dependent Supramolecular Isomeric Co-CPs for Luminescence Recognition and Catalytic Oxidation. Chemistry 2024; 30:e202403060. [PMID: 39390662 DOI: 10.1002/chem.202403060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Two Co-based supramolecular isomers were synthesized from a fluorinated carboxylic acid ligand under hydrothermal conditions at varying temperatures. Both exhibited similar one-dimensional chain structures while different bending connections of the aromatic rings led to different supramolecular structures, namely CoCP-1 and CoCP-2, respectively. The structural differences of two isomers resulted in discrepant performance with regards to luminescence sensing and catalysis. CoCP-1 demonstrated more significant luminescence quenching activity toward biomarkers 2,6-pyridinedicarboxylic acid (DPA) and homovanillic acid (HVA), which could be distinguished in the presence of Eu3+. The limit of detection (LOD) was found to be as low as 3.4 and 1.3 μM, respectively. The recovery rate of for HVA and DPA was within the range of 98.5-110.3 % and 84.6-99.3 % in simulated urine and serum, respectively, indicating potential reliability in monitoring these two analytes in real samples. Notably, CoCP-2 exhibited catalytic activity for the oxidation of thioethers to sulfoxides. Our finding here suggests that the coordination conformation of the ligands within supramolecular isomers plays a pivotal role in determining the structure and luminescence sensing/catalysis performance.
Collapse
Affiliation(s)
- Mengna Ji
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Tingting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Nana Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| |
Collapse
|
6
|
Vasile R, Borrallo-Aniceto MC, Esteban-Betegón F, Skorynina AA, Gomez-Mendoza M, de la Peña O’Shea VA, Gutiérrez Puebla E, Iglesias M, Monge MÁ, Gándara F. A Multimetal Approach for the Reticulation of Iridium into Metal-Organic Framework Building Units. J Am Chem Soc 2024; 146:25824-25831. [PMID: 39228089 PMCID: PMC11421005 DOI: 10.1021/jacs.4c08638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Noble metal elements are ubiquitous in our everyday life, from medical applications to electronic devices and synthetic chemistry. Iridium is one of the least abundant elements, and despite its scarcity, it remains essential for efficient and active catalytic processes. Consequently, the development of heterogeneous catalysts with the presence of active iridium sites is of enormous interest as it leads to the improvement of their recyclability and reusability. Here, we demonstrate a strategy to incorporate iridium atoms into metal-organic frameworks (MOFs), as part of their secondary building units (SBUs), resulting in robust and reusable materials with heterogeneous photocatalytic activity.
Collapse
Affiliation(s)
- Raluca
Loredana Vasile
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| | - M. Carmen Borrallo-Aniceto
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| | - Fátima Esteban-Betegón
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| | | | - Miguel Gomez-Mendoza
- Photoactivated
Processes Unit, IMDEA Energy Institute, Ramón de la Sagra 3, 28935 Móstoles, Spain
| | | | - Enrique Gutiérrez Puebla
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| | - Marta Iglesias
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| | - M. Ángeles Monge
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| | - Felipe Gándara
- Materials
Science Institute of Madrid − Spanish National Research Council
(ICMM-CSIC), 28049 Madrid, Spain
| |
Collapse
|
7
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
8
|
Emad-Abbas N, Naji J, Moradi P, Kikhavani T. 3-(Sulfamic acid)-propyltriethoxysilane on biochar nanoparticles as a practical, biocompatible, recyclable and chemoselective nanocatalyst in organic reactions. RSC Adv 2024; 14:22147-22158. [PMID: 39005254 PMCID: PMC11240877 DOI: 10.1039/d4ra02265c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Recyclable and inexpensive catalysts, waste regeneration, use of available and safe solvents are important principles of green chemistry. Therefore, in this project, biochar nanoparticles (BNPs) were synthesized by the pyrolysis method from chicken manure. Then, 3-(sulfamic acid)-propyltriethoxysilane (SAPES) was immobilized on the surface of BNPs (SAPES@BNPs). The prepared catalyst (SAPES@BNPs) was used as a commercial, practical, biocompatible and reusable catalyst in the selective oxidation of sulfides to sulfoxides. Further, the catalytic application of SAPES@BNPs was explored in the multicomponent synthesis of tetrahydrobenzo[b]pyrans under mild and green conditions. BNPs were characterized using SEM, TGA and XRD techniques. SAPES@BNPs were characterized using SEM, FT-IR spectroscopy, WDX, EDS, TGA, and XRD techniques. Particle size distribution was obtained by histogram graph. SAPES@BNPs can be recovered and reused several times. The purity of the products was studied using NMR spectroscopy.
Collapse
Affiliation(s)
| | - Jalil Naji
- Department of Physics, Faculty of Science, Ilam University Ilam Iran
| | - Parisa Moradi
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| | - Tavan Kikhavani
- Department of Chemical Engineering, Faculty of Engineering, Ilam University Ilam Iran
| |
Collapse
|
9
|
Huang XK, Zhou HY, Liu GF, Ye BH. Template Synthesis of Cyclometalated Macrocycle Iridium(III) Complexes Based on Photoinduced C-N Cross-Coupling Reactions In Situ. ACS OMEGA 2024; 9:24654-24664. [PMID: 38882114 PMCID: PMC11171095 DOI: 10.1021/acsomega.4c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
The synthesis of metal macrocycle complexes holds paramount importance in coordination and supramolecular chemistry. Toward this end, we report a new, mild, and efficient protocol for the synthesis of cyclometalated macrocycle Ir(III) complexes: [Ir(L1)](PF6) (1), [Ir(L2)](PF6) (2), and [Ir(L3)](PF6) (3), where L1 presents 10,17-dioxa-3,6-diaza-2(2,8),7(8,2)-diquinolina-1,8(1,4)-dibenzenacyclooctadecaphane, L2 is 10,13,16,19,22,25-hexaoxa-3,6-diaza-2(2,8),7(8,2)-diquinolina-1,8(1,4)-dibenzenacyclohexacosaphane, and L3 is 4-methyl-10,13,16,19,22,25-hexaoxa-3,6-diaza-2(2,8),7(8,2)-diquinolina-1,8(1,4)-dibenzenacyclohexacosaphane. This synthesis involves the preassembly of two symmetric 2-phenylquinoline arms into C-shape complexes, followed by cyclization with diamine via in situ interligand C-N cross-coupling, employing a metal ion as a template. Moreover, the synthetic yield of these cyclometalated Ir(III) complexes, tethered by an 18-crown-6 ether-like chain, is significantly enhanced in the presence of K+ ion as a template. The resultant cyclometalated macrocycle Ir(III) complexes exhibit high stability, efficient singlet oxygen generation, and superior catalytic activity for the aerobic selective oxidation of sulfides into sulfoxides under visible light irradiation in aqueous media at room temperature. The photocatalyst 2 demonstrates recyclability and can be reused at least 10 times without a significant loss of catalytic activity. These results unveil a new and complementary approach to the design and in situ synthesis of cyclometalated macrocycle Ir(III) complexes via a mild interligand-coupling strategy.
Collapse
Affiliation(s)
- Xiao-Kang Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Hai-Yun Zhou
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Gao-Feng Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
10
|
Yin L, Huang JB, Yue TC, Wang LL, Wang DZ. Two 2D Metal-Organic Frameworks Based on Purine Carboxylic Acid Ligands for Photocatalytic Oxidation of Sulfides and CO 2 Chemical Fixation. Inorg Chem 2024; 63:9109-9118. [PMID: 38711379 DOI: 10.1021/acs.inorgchem.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Two two-dimensional (2D) layered metal-organic frameworks (MOFs), namely, {[Yb(L)(H2O)2NO3]·2H2O}n (Yb-MOF) and [Er(L)(H2O)3Cl]n (Er-MOF) (H2L = 5-((6H-purin-6-yl)amino)isophthalic acid), were constructed by a solvothermal method and characterized. The catalytic performance study showed that the Yb-MOF could efficiently catalyze the oxidation of sulfides to sulfoxides under 15 W light-emitting diode (LED) blue light irradiation. Electron paramagnetic resonance spectroscopy and free-radical trapping experiments demonstrated that the photocatalytic reaction process involved •O2-, and the corresponding mechanism was proposed. Moreover, Er-MOF exhibited good catalytic efficiency and excellent substrate tolerance in the cycloaddition reaction of CO2, and the reaction conditions were mild. After 5 cycles, the catalytic activities of two MOFs did not significantly decrease, and the framework structures remained unchanged. Therefore, the Yb-MOF and Er-MOF were considered efficient and stable heterogeneous catalysts.
Collapse
Affiliation(s)
- Lin Yin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Jian-Bo Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Tian-Cai Yue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Lu-Lu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Duo-Zhi Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| |
Collapse
|
11
|
Si X, Zhang Y, Zhang X, Pan X, Wang F, Shao X, Yao Q, Duan W, Huang X, Su J. A Porous Carbazolic Al-MOF for Efficient Aerobic Photo-Oxidation of Sulfides into Sulfoxides under Air. Inorg Chem 2024; 63:4707-4715. [PMID: 38410082 DOI: 10.1021/acs.inorgchem.3c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A robust, microporous, and photoactive aluminum-based metal-organic framework (Al-MOF, LCU-600) has been assembled by an in situ-formed [Al3O(CO2)6] trinuclear building unit and a tritopic carbazole ligand. LCU-600 shows a high water stability and permanent porosity for N2 and CO2 adsorption. Notably, the incorporation of photoresponsive carbazole moieties into LCU-600 makes it a highly efficient and recyclable photocatalyst for aerobic photo-oxidation of sulfides into sulfoxides under an air atmosphere at room temperature. Mechanism investigations unveil that photogenerated holes (h+), superoxide radical anion (O2•-), and singlet oxygen (1O2) are critical active spices for the photo-oxidation reaction performed in an air atmosphere.
Collapse
Affiliation(s)
- Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yanjun Zhang
- Luxi Chemical Group Co., Ltd., New Chemical Materials Industrial Park, Liaocheng 252000, P. R. China
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Fudong Wang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xiaodong Shao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jie Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
12
|
Chen JQ, Zhang KY, Zhang XD, Huang ZQ, Deng H, Zhao Y, Shi ZZ, Sun WY. A Green Environmental Protection Photocatalytic Molecular Reactor for Aerobic Oxidation of Sulfide to Sulfoxide. Chemistry 2024; 30:e202303725. [PMID: 38032028 DOI: 10.1002/chem.202303725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
The design and synthesis of metal-organic frameworks (MOFs) as photocatalytic molecular reactors for varied reactions have drawn great attention. In this work, we designed a novel photoactive perylenediimides-based (PDI) carboxylate ligand N,N'-di(3',3",5',5"-tetrakis(4-carboxyphenyl))-1,2,6,7-tetrachloroperylene-3,4,9,10-tetracarboxylic acid diimide (Cl-PDI-TA) and use it to successfully synthesize a novel Zr(IV)-based MOF 1 constructed from [Zr6 O8 (H2 O)8 ]8+ clusters bridged by Cl-PDI-TA ligands. Structural analysis revealed that Zr-MOF 1 manifests a 3D framework with (4,8)-connected csq topology and possesses triangular channels of ~17 Å and mesoporous hexagonal channels of ~26 Å along c-axis. Moreover, the synthesized Zr-MOF 1 exhibits visible-light absorption and efficient photoinduced free radical generation property, making it a promising photocatalytic molecular reactor. When Zr-MOF 1 was used as a photocatalyst for the aerobic oxidation of sulfides under irradiation of visible light, it could afford the corresponding sulfoxides with high yield and selectivity. Experimental results demonstrated that the substrate sulfides could be fixed in the pores of 1 and directly transformed to the products sulfoxides in the solid state. Furthermore, the mechanism for the photocatalytic transformation was also investigated and the results revealed that the singlet oxygen (1 O2 ) and superoxide radical (O2 ⋅- ) generated by the energy transfer and electron transfer from the photoexcited Zr-MOF to oxidants were the main active species for the catalytic reactions. This work offers a perceptive comprehension of the mechanism in PDI-based MOFs for further study on photocatalytic reactions.
Collapse
Affiliation(s)
- Jia-Qi Chen
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Kai-Yang Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiu-Du Zhang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Zi-Qing Huang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Deng
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhuang-Zhi Shi
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
13
|
Wang JR, Song K, Luan TX, Cheng K, Wang Q, Wang Y, Yu WW, Li PZ, Zhao Y. Robust links in photoactive covalent organic frameworks enable effective photocatalytic reactions under harsh conditions. Nat Commun 2024; 15:1267. [PMID: 38341421 DOI: 10.1038/s41467-024-45457-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Developing heterogeneous photocatalysts for the applications in harsh conditions is of high importance but challenging. Herein, by converting the imine linkages into quinoline groups of triphenylamine incorporated covalent organic frameworks (COFs), two photosensitive COFs, namely TFPA-TAPT-COF-Q and TFPA-TPB-COF-Q, are successfully constructed. The obtained quinoline-linked COFs display improved stability and photocatalytic activity, making them suitable photocatalysts for photocatalytic reactions under harsh conditions, as verified by the recyclable photocatalytic reactions of organic acid involving oxidative decarboxylation and organic base involving benzylamine coupling. Under strong oxidative condition, the quinoline-linked COFs show a high efficiency up to 11831.6 μmol·g-1·h-1 and a long-term recyclable usability for photocatalytic production of H2O2, while the pristine imine-linked COFs are less catalytically active and easily decomposed in these harsh conditions. The results demonstrate that enhancing the linkage robustness of photoactive COFs is a promising strategy to construct heterogeneous catalysts for photocatalytic reactions under harsh conditions.
Collapse
Affiliation(s)
- Jia-Rui Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Kepeng Song
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Ke Cheng
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Qiurong Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.
| |
Collapse
|
14
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
15
|
Li J, Huang JY, Meng YX, Li L, Zhang LL, Jiang HL. Zr- and Ti-based metal-organic frameworks: synthesis, structures and catalytic applications. Chem Commun (Camb) 2023; 59:2541-2559. [PMID: 36749364 DOI: 10.1039/d2cc06948b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, Zr- and Ti-based metal-organic frameworks (MOFs) have gathered increasing interest in the field of chemistry and materials science, not only for their ordered porous structure, large surface area, and high thermal and chemical stability, but also for their various potential applications. Particularly, the unique features of Zr- and Ti-based MOFs enable them to be a highly versatile platform for catalysis. Although much effort has been devoted to developing Zr- and Ti-based MOF materials, they still suffer from difficulties in targeted synthesis, especially for Ti-based MOFs. In this Feature Article, we discuss the evolution of Zr- and Ti-based MOFs, giving a brief overview of their synthesis and structures. Furthermore, the catalytic uses of Zr- and Ti-based MOF materials in the previous 3-5 years have been highlighted. Finally, perspectives on the Zr- and Ti-based MOF materials are also proposed. This work provides in-depth insight into the advances in Zr- and Ti-based MOFs and boosts their catalytic applications.
Collapse
Affiliation(s)
- Ji Li
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China
| | - Jin-Yi Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Yu-Xuan Meng
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Luyan Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Liang-Liang Zhang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China.,Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
16
|
Zhao Z, Liu M, Zhou K, Guo L, Shen Y, Lu D, Hong X, Bao Z, Yang Q, Ren Q, Schreiner PR, Zhang Z. Visible-Light-Induced Phenoxyl Radical-based Metal-Organic Framework for Selective Photooxidation of Sulfides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6982-6989. [PMID: 36715584 DOI: 10.1021/acsami.2c21304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phenoxyl radicals originating from phenols through oxidation or photoinduction are relatively stable and exhibit mild oxidative activity, which endows them with the potential for photocatalysis. Herein, a stable and recyclable metal-organic framework Zr-MOF-OH constructed of a binaphthol derivative ligand has been synthesized and functions as an efficient heterogeneous photocatalyst. Zr-MOF-OH shows fairly good catalytic activity and substrate compatibility toward the selective oxidation of sulfides to sulfoxides under visible light irradiation. Such irradiation of Zr-MOF-OH converts the phenolic hydroxyl groups of the binaphthol derivative ligand to phenoxyl radicals through excited state intramolecular proton transfer, and the excited state photocatalyst triggers the single-electron oxidation of the sulfide. No reactive oxygen species are produced in the photocatalytic process, and triplet O2 directly participates in the reaction, endowing Zr-MOF-OH with wide substrate compatibility and high selectivity, which also proposes a promising pathway for the direct activation of substrates via phenoxyl radicals.
Collapse
Affiliation(s)
- Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Yajing Shen
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Dan Lu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| |
Collapse
|
17
|
Luo H, Liu H, Sun C. Removal of Sulfide Ions from Kraft Washing Effluents by Photocatalysis with N and Fe Codoped Carbon Dots. Polymers (Basel) 2023; 15:679. [PMID: 36771979 PMCID: PMC9921700 DOI: 10.3390/polym15030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
N and Fe codoped carbon dots (N,Fe-CDs) were fabricated from citric acid, L-glutamic acid and ferric chloride via a hydrothermal method for the photocatalytic removal of S2- from kraft washing effluents (KWE). The N,Fe-CDs were fluorescent nanoparticles (average size of 3.18 nm) and catalyzed the oxidation of S2- following a first-order kinetic model with an activation energy of 33.77 kJ/mol. The N,Fe-CDs tolerated elevated temperatures as high as 80 °C without catalyst deactivation. The N,Fe-CDs catalysts were reusable for at least four cycles, preserving over 90% of the activity. In the treatment of KWE from the kraft pulping of eucalyptus, the concentration of S2- was decreased by the N,Fe-CDs from 1.19 to 0.41 mmol/L in 6 h. Consequently, near complete remediation was obtained in 24 h. In addition, half of the chemical oxygen demand was removed after treatment with 500 mg/L of the N,Fe-CDs. In addition, the present photocatalyst was safe within a concentration of 200 mg/L, as indicated by the acetylcholinesterase inhibition test. Our findings may help develop a cleaner production process for kraft brownstock washing.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Hao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
- Bengbu-SCUT Research Center for Advanced Manufacturing of Biomaterials, Bengbu 233010, China
| | - Chengwu Sun
- Bengbu-SCUT Research Center for Advanced Manufacturing of Biomaterials, Bengbu 233010, China
| |
Collapse
|
18
|
Panda J, Sahoo T, Swain J, Panda PK, Tripathy BC, Samantaray R, Sahu R. The Journey from Porous Materials to Metal-organic Frameworks and their Catalytic Applications: A Review. Curr Org Synth 2023; 20:220-237. [PMID: 35209833 DOI: 10.2174/1570179419666220223093955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
Abstract
Metal-Organic Frameworks (MOFs), a class of inorganic-organic hybrid materials, have been at the center of material science for the past three decades. They are synthesized by metal ions and organic linker precursors and have become very potential materials for different applications ranging from sensing, separation, catalytic behaviour to biomedical applications and drug delivery, owing to their structural flexibility, porosity and functionality. They are also very promising in heterogeneous catalysis for various industrial applications. These catalysts can be easily synthesized with extremely high surface areas, tunable pore sizes, and incorporation of catalytic centers via post-synthetic modification (PSM) or exchange of their components as compared to traditional heterogeneous catalysts, which is the preliminary requirement of a better catalyst. Here, in this review, we have presented the history of MOFs, different synthesis procedures, and MOFcatalysed reactions; for instance, coupling reactions, condensation reactions, Friedel-Crafts reaction, oxidation, etc. Special attention has been given to MOFs containing different catalytic centers, including open metal sites, incorporation of catalytic centers through PSM, and bifunctional acidbase sites. The important role of catalytic centers present in MOFs and reaction mechanisms have also been outlined with examples.
Collapse
Affiliation(s)
- Jagannath Panda
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar- 751024, India
| | - Tejaswini Sahoo
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar- 751024, India
| | - Jaykishon Swain
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar- 751024, India
| | - Prasanna Kumar Panda
- Institute of Minerals and Material Technology (CSIR-IMMT), Bhubaneswar-751013, India
| | | | - Raghabendra Samantaray
- School of Biotechnology and Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, India
| | - Rojalin Sahu
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar- 751024, India
| |
Collapse
|
19
|
Zhao Z, Liu M, Zhou K, Gong H, Shen Y, Bao Z, Yang Q, Ren Q, Zhang Z. Zr-Based Metal-Organic Frameworks with Phosphoric Acids for the Photo-Oxidation of Sulfides. Int J Mol Sci 2022; 23:ijms232416121. [PMID: 36555762 PMCID: PMC9784696 DOI: 10.3390/ijms232416121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Heterogeneous Brønsted acidic catalysts such as phosphoric acids are the conventional activators for organic transformations. However, the photocatalytic performance of these catalysts is still rarely explored. Herein, a novel Zr-based metal-organic framework Zr-MOF-P with phosphoric acids as a heterogeneous photocatalyst has been fabricated, which shows high selectivity and reactivity towards the photo-oxidation of sulfides under white light illumination. A mechanism study indicates that the selective oxygenation of sulfides occurs with triplet oxygen rather than common reactive oxygen species (ROS). When Zr-MOF-P is irradiated, the hydroxyl group of phosphoric acid is converted into oxygen radical, which takes an electron from the sulfides, and then the activated substrates react with the triplet oxygen to form sulfoxides, avoiding the destruction of the catalysts and endowing the reaction with high substrate compatibility and fine recyclability.
Collapse
Affiliation(s)
- Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Hantao Gong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Yajing Shen
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
- Correspondence:
| |
Collapse
|
20
|
Sheng K, Huang XQ, Wang R, Wang WZ, Gao ZY, Tung CH, Sun D. Decagram-Scale Synthesis of Heterometallic Ag/Ti Cluster as Sustainable Catalyst for Selective Oxidation of Sulfides. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Synthesis and Characterization of Nickel Metal-Organic Framework Including 4,6-diamino-2-mercaptopyrimidine and its Catalytic Application in Organic Reactions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04135-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Xu M, Zhang J, Liu L, Cheng X, Hu J, Sha Y, Su Z, Wang Y. Co(NO 3) 2/covalent organic framework nanoparticles for high-efficiency photocatalytic oxidation of thioanisole. Chem Commun (Camb) 2022; 58:6324-6327. [PMID: 35527508 DOI: 10.1039/d2cc01616h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we demonstrated a highly efficient photocatalytic sulfide oxidation reaction at ambient conditions without a sacrificial reagent or redox mediator, by using Co(NO3)2/covalent organic framework nanoparticles as a photocatalyst.
Collapse
Affiliation(s)
- Mingzhao Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, P. R. China
| | - Lifei Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuyan Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyang Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yufei Sha
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhuizhui Su
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanyue Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
23
|
Wei XM, Huang SL, Yang GY, Qi YF. Ru(N˄N)3‐Metalloligand Pillared Zr6–Organic Layers for Aerobic Photooxidation. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao-Mei Wei
- Beijing Institute of Technology School of Chemisty and Chemical Engineering CHINA
| | - Sheng-Li Huang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering No. 5 Yard, Zhong Guan Cun South Street. 100081 Beijing CHINA
| | - Guo-Yu Yang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yong-Fang Qi
- Henan Open University College of Rural Revitalization CHINA
| |
Collapse
|
24
|
Zhang D, Zou XN, Wang XG, Su J, Luan TX, Fan W, Li PZ, Zhao Y. Highly Effective Photocatalytic Radical Reactions Triggered by a Photoactive Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23518-23526. [PMID: 35537034 DOI: 10.1021/acsami.2c04331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
On account of their inherent reactive properties, radical reactions play an important role in organic syntheses. The booming photochemistry provides a feasible approach to trigger the generation of radical intermediates in organic reaction processes. Thus, developing effective photocatalysts becomes the key step in radical reactions. In this work, the triphenylamine moiety with photoactivity is successfully embedded in a highly porous and stable metal-organic framework (MOF), and the obtained MOF, namely, Zr-TCA, naturally displays a photoactive property derived from the triphenylamine-based ligand. In photocatalytic studies, the triphenylamine-based Zr-TCA not only exhibits a high catalytic activity on the aerobic oxidation of sulfides via the generation of the superoxide radical anion (O2•-) under light irradiation but also shows good efficiency in the trifluoromethylation of arenes and heteroarenes by the formation of the trifluoromethyl radical (CF3•) as an intermediate. Moreover, the high performance of Zr-TCA can be well maintained over a wide range of substrates in these radical reactions, and the recycled Zr-TCA still retains its excellent photocatalytic activity. The high recyclability and catalytic efficiency to various substrates make the constructed triphenylamine-based Zr-TCA a promising photocatalyst in diverse radical reactions.
Collapse
Affiliation(s)
- Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Xin-Nan Zou
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Xiao-Ge Wang
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jie Su
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Weiliu Fan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237 Shandong Province, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
25
|
Xie D, Wang S, Li S, Yang W, Feng YS. A two-dimensional Bi-based porphyrin metal–organic framework photocatalyst for white light-driven selective oxidation of sulfides. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00387b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A single crystal of a Bi-based porphyrin metal–organic framework was synthesized by a hydrothermal method. It exhibited significant photocatalytic activity for the selective oxidation of sulfides, maintaining high activity after 10 catalytic cycles.
Collapse
Affiliation(s)
- Dale Xie
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Sheng Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Shihao Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Wenqing Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| |
Collapse
|
26
|
Yu YH, Huang SL, Yang GY. [Ru(NꓥNꓥN)2-Ce]-based Framework for Photocatalytic Sulfide Oxidation and Hydrogen Production. CrystEngComm 2022. [DOI: 10.1039/d2ce00397j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using photosensitized Ru(NꓥNꓥN)2-metalloligand, a series of Ce-frameworks were synthesized. The incorporation of visible-light-responsive Ru(NꓥNꓥN)2-unit endows the Ce-frameworks with photocatalytic activities in both sulfide oxidation and hydrogen production. The doping of...
Collapse
|
27
|
Lu G, Chu F, Huang X, Li Y, Liang K, Wang G. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214240] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Wang L, Shen D, Zhang H, Mo B, Wu J, Hou H. Z-Scheme In 2 S 3 /NU-1000 Heterojunction for Boosting Photo-Oxidation of Sulfide into Sulfoxide under Ambient Conditions. Chemistry 2021; 28:e202103466. [PMID: 34889478 DOI: 10.1002/chem.202103466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/10/2022]
Abstract
Photocatalytic oxidation of sulfide into sulfoxide has attracted extensive attention as an environmentally friendly strategy for chemical transformations or toxic chemicals degradation. Herein, we construct a series of In2 S3 /NU-1000 heterojunction photocatalysts, which can efficiently catalyze the oxidation of sulfides to form sulfoxides as the sole product under LED lamp (full-spectrum) illumination in air at room temperature. Especially, the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES), can also be photocatalytically oxidized with In2 S3 /NU-1000 to afford nontoxic 2-chloroethyl ethyl sulfoxide (CEESO) selectively and effectively. In contrast, individual NU-1000 and In2 S3 show very low catalytic activity on this reaction. The significantly improved photocatalytic activity is ascribed to the constructing of an efficient Z-scheme photocatalysts In2 S3 /NU-1000, which exhibits the enhancement of light harvesting, the promotion of photogenerated electron-hole separation, and the retention of high porosity of the parent MOF. Moreover, mechanism studies in photocatalytic oxidation reveal that the superoxide radical (. O2 - ) and singlet oxygen (1 O2 ) are the main oxidative species in the oxidation system. This work exploits the opportunities for the construction of porous Z-scheme photocatalysts based on the photoactive MOFs materials and inorganic semiconductors for promoting catalytic organic transformations. More importantly, it provides a route to the rational design of efficient photocatalysts for the detoxification of mustard gas.
Collapse
Affiliation(s)
- Lianlian Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Dalong Shen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Heyao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bingyan Mo
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jie Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hongwei Hou
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
29
|
Recent advances of Zr based metal organic frameworks photocatalysis: Energy production and environmental remediation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214177] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Jiang WL, Huang B, Wu MX, Zhu YK, Zhao XL, Shi X, Yang HB. Post-Synthetic Modification of Metal-Organic Frameworks Bearing Phenazine Radical Cations for aza-Diels-Alder Reactions. Chem Asian J 2021; 16:3985-3992. [PMID: 34652071 DOI: 10.1002/asia.202100883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/22/2021] [Indexed: 11/07/2022]
Abstract
Metal-organic frameworks (MOFs) consisting of organic radicals are of great interest because they have exhibited unique and intriguing optical, electronic, magnetic, and chemo-catalytic properties, and thus have demonstrated great potential applications in optical, electronic, and magnetic devices, and as catalysts. However, the preparation of MOFs bearing stable organic radicals is very challenging because most organic radicals are highly reactive and difficult to incorporate into the framework of MOFs. Herein we reported a post-synthetic modification strategy to prepare a novel MOF containing phenazine radical cations, which was used as heterogeneous catalyst for aza-Diels-Alder reaction. The zinc-based metal-organic framework Zn2 (PHZ)2 (dabco) (N) was successfully synthesized from 5,10-di(4-benzoic acid)-5,10-dihydrophenazine (PHZ), triethylene diamine (dabco) with Zn(NO3 )2 ⋅ 6H2 O by solvothermal method. The as-synthesized MOF N was partially oxidized by AgSbF6 to form MOF R containing ∼10% phenazine radical cation species. The resultant MOF R was found to keep the original crystal type of N and very persistent under ambient conditions. Consequently, MOF R was successfully employed in radical cation-catalyzed aza-Diels-Alder reactions with various imine substrates at room temperature with high reaction conversion. Moreover, heterogeneous catalyst MOF R was reusable up to five times without much loss of catalytic activity, demonstrating its excellent stability and recyclability. Therefore, the post-synthetic modification developed in this work is expected to become a versatile strategy to prepare radical-based MOFs for the application of heterogeneous catalysts in organic synthesis.
Collapse
Affiliation(s)
- Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Meng-Xiang Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Ye-Kai Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
31
|
Koolivand M, Nikoorazm M, Ghorbani‐Choghamarani A, Tahmasbi B. Cu–citric acid metal–organic framework: Synthesis, characterization and catalytic application in Suzuki–Miyaura cross‐coupling reaction and oxidation of sulfides. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mostafa Koolivand
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | - Mohsen Nikoorazm
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | | | - Bahman Tahmasbi
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| |
Collapse
|
32
|
Amri N, Wirth T. Flow Electrosynthesis of Sulfoxides, Sulfones, and Sulfoximines without Supporting Electrolytes. J Org Chem 2021; 86:15961-15972. [PMID: 34164983 DOI: 10.1021/acs.joc.1c00860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An efficient electrochemical flow process for the selective oxidation of sulfides to sulfoxides and sulfones and of sulfoxides to N-cyanosulfoximines has been developed. In total, 69 examples of sulfoxides, sulfones, and N-cyanosulfoximines have been synthesized in good to excellent yields and with high current efficiencies. The synthesis was assisted and facilitated through a supporting electrolyte-free, fully automated electrochemical protocol that highlights the advantages of flow electrolysis.
Collapse
Affiliation(s)
- Nasser Amri
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
33
|
Li J, Zhao J, Ma C, Yu Z, Zhu H, Yun L, Meng Q. Visible-Light-Driven Oxidative Cleavage of Alkenes Using Water-Soluble CdSe Quantum Dots. CHEMSUSCHEM 2021; 14:4985-4992. [PMID: 34494393 DOI: 10.1002/cssc.202101504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The oxidative cleavage of C=C bonds is an important chemical reaction, which is a popular reaction in the photocatalytic field. However, high catalyst-loading and low turnover number (TON) are general shortcomings in reported visible-light-driven reactions. Herein, the direct oxidative cleavage of C=C bonds through water-soluble CdSe quantum dots (QDs) is described under visible-light irradiation at room temperature with high TON (up to 3.7×104 ). Under the same conditions, water-soluble CdSe QDs could also oxidize sulfides to sulfoxides with 51-84 % yields and TONs up to 3.4×104 . The key features of this photocatalytic protocol include high TONs, wide substrates scope, low catalyst loadings, simple and mild reaction conditions, and molecular O2 as the oxidant.
Collapse
Affiliation(s)
- Jianing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Hongfei Zhu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Lei Yun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
- Ningbo Institute, Dalian University of Technology, Ningbo, Zhejiang, 315016, P. R. China
| |
Collapse
|
34
|
Zhu JH, Xu GX, Shum J, Lee LCC, Lo KKW. Tuning the organelle specificity and cytotoxicity of iridium(III) photosensitisers for enhanced phototheranostic applications. Chem Commun (Camb) 2021; 57:12008-12011. [PMID: 34709253 DOI: 10.1039/d1cc04982h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Luminescent cyclometallated iridium(III) complexes with a polyhedral oligomeric silsesquioxane (POSS) unit were designed as efficient theranostic agents that displayed tuneable organelle-targeting properties, minimal dark cytotoxicity and substantial photocytotoxicity even under hypoxic conditions.
Collapse
Affiliation(s)
- Jing-Hui Zhu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China.
| | - Guang-Xi Xu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China.
| | - Justin Shum
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China.
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China.
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China.
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
- Centre of Functional Photonics, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| |
Collapse
|
35
|
Base-free catalytic aerobic oxidation of mercaptans over MOF-derived Co/CN catalyst with controllable composition and structure. J Colloid Interface Sci 2021; 607:1836-1848. [PMID: 34695736 DOI: 10.1016/j.jcis.2021.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 01/25/2023]
Abstract
The oxidation of mercaptans under mild and base-free conditions is of vital importance in terms of economy and environment for petroleum processing industry. Here, we developed a series of MOF-derived cobalt-based nitrogen-doped (N-doped) carbon (Co/CN-x) catalysts for the base-free catalytic oxidation of mercaptans. The optimal Co/CN-900 showed excellent catalytic activity for the oxidation of mercaptans under base-free conditions, yielding complete conversion of various mercaptans and > 99.0% selectivity of disulfides. The high performance can be contributed to the advantages of hierarchical pore structure for the diffusion and migration of substrates, self-carrying alkalinity for the formation of mercaptide anion, abundant active Co sites for catalytic oxidation of mercaptans as well as the synergistic effects between the Co nanoparticles (NPs) and N-doped carbon supports. Furthermore, a possible mechanism for base-free catalytic oxidation of mercaptans over Co/CN-x catalysts is proposed based on a set of control experiments and density functional theory (DFT) calculations.
Collapse
|
36
|
Zhang X, Wei X, Huang SL, Yang GY. Selective Photocatalytic Oxidation of Sulfides in Lanthanide Metal -Organic Frameworks Incorporating Ru(2,2'-bpy) 3 photosensitizer. Chem Asian J 2021; 16:2031-2034. [PMID: 34180132 DOI: 10.1002/asia.202100482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Indexed: 11/08/2022]
Abstract
Three isostructural lanthanide metal-organic frameworks (Ln-MOFs) were synthesized with uncoordinated N^N site, and the Ru(N^N)3 photosensitizer was introduced via coordination link. These functionalized frameworks showed excellent performance in the photocatalytic oxidation of sulfides with good conversion and high sulfoxide selectivity.
Collapse
Affiliation(s)
- Xiaobang Zhang
- MOE Key Laboratory of Cluster Science, Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaomei Wei
- MOE Key Laboratory of Cluster Science, Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
37
|
Oroujzadeh N, Baradaran Z, Sedrpoushan A. An efficient heterogeneous Cu(I) complex for the catalytic oxidation of alcohols and sulfides: synthesis, characterization, and investigation of the catalyst activity. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1950698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nasrin Oroujzadeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Zahra Baradaran
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Alireza Sedrpoushan
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| |
Collapse
|
38
|
Zou XN, Zhang D, Luan TX, Li Q, Li L, Li PZ, Zhao Y. Incorporating Photochromic Triphenylamine into a Zirconium-Organic Framework for Highly Effective Photocatalytic Aerobic Oxidation of Sulfides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20137-20144. [PMID: 33886272 DOI: 10.1021/acsami.1c03083] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A zirconium-based metal-organic framework (MOF) was successfully constructed via solvothermal assembly of a triphenylamine-based tricarboxylate ligand and Zr(IV) salt, the structure simulation of which revealed that it possesses a two-dimensional layered framework with a relatively rare dodecnuclear Zr12 cluster as the inorganic building unit. The inherent photo-responsive property derived from the incorporated photochromic triphenylamine groups combined with its high stability makes the constructed MOF an efficient heterogeneous photocatalyst for the oxidation of sulfides, which is a fundamentally important reaction type in both environmental and pharmaceutical industries. The photocatalytic activity of the constructed MOF was first investigated under various conditions with thioanisole as a representative sulfide substrate. The MOF exhibited both high efficiency and selectivity on aerobic oxidation of thioanisole in methanol utilizing molecular oxygen in air as the oxidant under blue light irradiation for 10 h. Its high photocatalytic performance was also observed when extending the sulfide substrate to diverse thioanisole derivatives and even a sulfur-containing nerve agent simulant (2-chloroethyl ethyl sulfide). The high photocatalytic efficiency and selectivity to a broad set of sulfide substrates make the triphenylamine-incorporating zirconium-based MOF a highly promising heterogeneous photocatalyst.
Collapse
Affiliation(s)
- Xin-Nan Zou
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Qiang Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Lei Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
39
|
Ghorbani-Choghamarani A, Bastan H, Kakakhani Z, Taherinia Z. Preparation of Ni-microsphere and Cu-MOF using aspartic acid as coordinating ligand and study of their catalytic properties in Stille and sulfoxidation reactions. RSC Adv 2021; 11:14905-14914. [PMID: 35424021 PMCID: PMC8697805 DOI: 10.1039/d1ra00734c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, the thermal and catalytic behavior of Ni-microsphere and Cu-MOF were investigated with aspartic acid as the coordinating ligand with different morphologies. The Ni-microsphere and Cu-MOF with aspartic acid, as the coordinating ligand, were prepared via a solvothermal method. The morphology and porosity of the obtained Ni microsphere and Cu-MOF were characterized by XRD, FTIR, TGA, DSC, BET and SEM techniques. The catalytic activity of the Ni-microsphere and Cu-MOF was examined in Stille and sulfoxidation reactions. The Ni microsphere and Cu-MOF were easily isolated from the reaction mixtures by simple filtration and then recycled four times without any reduction of catalytic efficiency.
Collapse
Affiliation(s)
- Arash Ghorbani-Choghamarani
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Hosna Bastan
- Department of Chemistry, Ilam University P.O. Box 69315516 Ilam Iran
| | - Zahra Kakakhani
- Department of Chemistry, Ilam University P.O. Box 69315516 Ilam Iran
| | - Zahra Taherinia
- Department of Chemistry, Ilam University P.O. Box 69315516 Ilam Iran
| |
Collapse
|
40
|
Xia Z, Li D, Deng W. Identification and Detection of Volatile Aldehydes as Lung Cancer Biomarkers by Vapor Generation Combined with Paper-Based Thin-Film Microextraction. Anal Chem 2021; 93:4924-4931. [DOI: 10.1021/acs.analchem.0c05348] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhaoping Xia
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| |
Collapse
|
41
|
Lei L, Han L, Wang J, Liu Y, Wang Z, Wang P, Zheng Z, Cheng H, Dai Y, Huang B. Tuning the Conduction Band Potential of Bi-based Semiconductors Using a Combination of Organic Ligands. CHEMSUSCHEM 2021; 14:892-897. [PMID: 33300683 DOI: 10.1002/cssc.202002242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Most Bi-based semiconductors are incapable of photocatalytic reduction reaction from a thermodynamic view, owing to relatively positive conduction band potentials (ECB ). Here, a novel Bi-based metal-organic framework (Bi-MBA, MBA=4-mercaptobenzoic acid) with excellent photocatalytic reduction activities is developed. The ECB of Bi-MBA locates at -1.38 eV, which is able to efficiently reduce O2 , CrVI and CO2 . Theoretical calculations reveal the significant contribution of organic ligand (MBA) to the conduction band. Our results provide an effective route to improve the photocatalytic reduction activities of Bi-based photocatalysts.
Collapse
Affiliation(s)
- Longfei Lei
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Liuyuan Han
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Jiajia Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, P.R. China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| |
Collapse
|
42
|
Li J, Liu J, Liu S, Li J. Uranyl-MOF for Thioether Oxidation Processes Under Visible Light Conditions. Catal Letters 2021. [DOI: 10.1007/s10562-021-03544-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Luo L, Zhang T, Wang M, Yun R, Xiang X. Recent Advances in Heterogeneous Photo-Driven Oxidation of Organic Molecules by Reactive Oxygen Species. CHEMSUSCHEM 2020; 13:5173-5184. [PMID: 32721068 DOI: 10.1002/cssc.202001398] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The photo-driven oxidation of organic molecules into corresponding high-value-added products has become a promising method in chemical synthesis. This strategy can drive thermodynamically non-spontaneous reactions and achieve challenging thermocatalytic processes under ambient conditions. Reactive oxygen species (ROS) are not only significant intermediates for producing target products via photoinduced oxidation reactions but also contribute to the creation of sustainable chemical processes. Here, the latest advances in heterogeneous photo-driven oxidation reactions involving ROS are summarized. The major types of ROS and their generation are introduced, and the behaviors of various ROS involved in photo-driven processes are reviewed in terms of the formation of different bonds. Emphasis is placed on unraveling the reaction mechanisms of ROS and establishing strategies for their regulation, and the remaining challenges and perspectives are summarized and analyzed. This Review is expected to provide an in-depth understanding of the mechanisms of ROS involved in photo-driven oxidation processes as an important foundation for the design of efficient catalysts. Clarifying the role of ROS in oxidation reactions has important scientific significance for improving the atomic and energy efficiency of reactions in practical applications.
Collapse
Affiliation(s)
- Lan Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Tingting Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Miao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Rongping Yun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| |
Collapse
|
44
|
Domingo-Legarda P, Casado-Sánchez A, Marzo L, Alemán J, Cabrera S. Photocatalytic Water-Soluble Cationic Platinum(II) Complexes Bearing Quinolinate and Phosphine Ligands. Inorg Chem 2020; 59:13845-13857. [DOI: 10.1021/acs.inorgchem.0c01326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Leyre Marzo
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Cabrera
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
45
|
Metal–Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts 2020. [DOI: 10.3390/catal10070720] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Among the different alternatives for catalysis using metal–organic frameworks (MOFs) or covalent organic frameworks (COFs), photocatalysis has remarkably evolved during the last decade. Photocatalytic reticular materials allowed recyclability and easy separation of catalyst from the product, also reaching the activity and selectivity commonly observed for molecular systems. Recently, photocatalytic MOFs and COFs have been applied to synthetic applications in order to obtain organic molecules of different complexity. However, although a good number of works have been devoted to this issue, an updated comprehensive revision on this field is still needed. The aim of this review was to fill this gap covering the following three general aspects: (1) common strategies on the design of reticular photocatalytic materials, (2) a comprehensive discussion of the photocatalytic organic reactions achieved by the use of COFs and MOFs, and (3) some critical considerations highlighting directions that should be considered in order to make advances in the study of photocatalytic COFs and MOFs.
Collapse
|
46
|
Deng L, Yin D, Khaing KK, Xiao S, Li L, Guo X, Wang J, Zhang Y. The facile boosting sunlight-driven photocatalytic performance of a metal–organic-framework through coupling with Ag2S nanoparticles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02030c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A facile method was successfully developed to tremendously boost sunlight-driven photocatalytic performance of a MOFs material (MIL-53(Fe)) by coupling with silver sulfide (Ag2S) nanoparticles for the first time.
Collapse
Affiliation(s)
- Linlin Deng
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Dongguang Yin
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Kyu Kyu Khaing
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | | | - Luqiu Li
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Xiandi Guo
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Jun Wang
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Yong Zhang
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| |
Collapse
|