1
|
Xue H, Shi Y, Tian W, Cao M, Cao H, Na Z, Jiang G, Jin Z, Lang MF, Liu Y, Sun J. Silver Nanowires-Based Flexible Gold Electrode Overcoming Interior Impedance of Nanomaterial Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307328. [PMID: 38196157 DOI: 10.1002/smll.202307328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Indexed: 01/11/2024]
Abstract
In the development of nanomaterial electrodes for improved electrocatalytic activity, much attention is paid to the compositions, lattice, and surface morphologies. In this study, a new concept to enhance electrocatalytic activity is proposed by reducing impedance inside nanomaterial electrodes. Gold nanodendrites (AuNDs) are grown along silver nanowires (AgNWs) on flexible polydimethylsiloxane (PDMS) support. The AuNDs/AgNWs/PDMS electrode affords an oxidative peak current density of 50 mA cm-2 for ethanol electrooxidation, a value ≈20 times higher than those in the literature do. Electrochemical impedance spectroscopy (EIS) demonstrates the significant contribution of the AgNWs to reduce impedance. The peak current densities for ethanol electrooxidation are decreased 7.5-fold when the AgNWs are electrolytically corroded. By in situ surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulation, it is validated that the ethanol electrooxidation favors the production of acetic acid with undetectable CO, resulting in a more complete oxidation and long-term stability, while the AgNWs corrosion greatly decreases acetic acid production. This novel strategy for fabricating nanomaterial electrodes using AgNWs as a charge transfer conduit may stimulate insights into the design of nanomaterial electrodes.
Collapse
Affiliation(s)
- Hongsheng Xue
- Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, China
| | - Yacheng Shi
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Wenshuai Tian
- College of Chemical and Environmental Engineering, Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian University, Dalian, Liaoning, 116622, China
- College of Marine Engineering, Dalian Maritime University, Dalian, Liaoning, 116026, China
| | - Meng Cao
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Houyong Cao
- College of Chemical and Environmental Engineering, Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian University, Dalian, Liaoning, 116622, China
| | - Zhaolin Na
- College of Chemical and Environmental Engineering, Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian University, Dalian, Liaoning, 116622, China
| | - Ge Jiang
- College of Life and Health, Dalian University, Dalian, Liaoning, 116622, China
| | - Zhengmu Jin
- Dalian Ofei Electronics CO.,LTD., Dalian, Liaoning, 116021, China
| | - Ming-Fei Lang
- Medical College, Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian University, Dalian, Liaoning, 116622, China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Jing Sun
- College of Chemical and Environmental Engineering, Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian University, Dalian, Liaoning, 116622, China
| |
Collapse
|
2
|
Li X, Sun B, Chen Q, Lee HK, Shi B, Ren H, Li H, Ma Z, Fu M. Integrating photothermal and plasmonic catalysis induced by near-infrared light for efficient reduction of 4-nitrophenol. J Colloid Interface Sci 2024; 660:726-734. [PMID: 38271808 DOI: 10.1016/j.jcis.2024.01.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) is an important reaction in both chemical manufacturing and environmental protection. The design of a highly active, multifunctional and reusable catalyst for efficient 4-NP decontamination/valorization is therefore crucial to bring in economic and societal benefits. Herein, we achieve an efficient plasmonic-photothermal catalyst of Pd nanoparticles by growing them on graphene-polyelectrolytes self-assembly nanolayers via an in situ green reduction approach using polyelectrolyte as the reductant. The as-fabricated catalyst shows high catalytic behaviors and good stability (maintained over 92.5 % conversion efficiency after ten successive cycles) for 4-NP reduction under ultra-low catalyst dose. The rate constant and turnover frequency were calculated at 0.197 min-1 and 7.79 mmol g-1 min-1, respectively, which were much higher than those of most reported catalysts. Moreover, the as-prepared catalyst exhibited excellent photothermal conversion efficiency of ∼77 % and boosted 4-NP reduction by ∼2-fold under near-infrared irradiation (NIR). This study provides valuable insights into the design of greener catalytic materials and facilitates the development of multifunctional plasmonic-photothermal catalysts for diverse environmental, chemical, and energy applications using NIR.
Collapse
Affiliation(s)
- Xiangming Li
- School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Bo Sun
- School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qingpeng Chen
- School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | - Bo Shi
- School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Hegang Ren
- School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Zequn Ma
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Meng Fu
- School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| |
Collapse
|
3
|
Grafting PDMAEMA brushes onto graphene oxide for fabricating Ag nanosheet-assembled microspheres as SERS substrates. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Liu Z, Ji X, He D, Zhang R, Liu Q, Xin T. Nanoscale Drug Delivery Systems in Glioblastoma. NANOSCALE RESEARCH LETTERS 2022; 17:27. [PMID: 35171358 PMCID: PMC8850533 DOI: 10.1186/s11671-022-03668-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/09/2022] [Indexed: 05/13/2023]
Abstract
Glioblastoma is the most aggressive cerebral tumor in adults. However, the current pharmaceuticals in GBM treatment are mainly restricted to few chemotherapeutic drugs and have limited efficacy. Therefore, various nanoscale biomaterials that possess distinct structure and unique property were constructed as vehicles to precisely deliver molecules with potential therapeutic effect. In this review, nanoparticle drug delivery systems including CNTs, GBNs, C-dots, MOFs, Liposomes, MSNs, GNPs, PMs, Dendrimers and Nanogel were exemplified. The advantages and disadvantages of these nanoparticles in GBM treatment were illustrated.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China.
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang Jiangxi, 330006, China.
| |
Collapse
|
5
|
Zhang G, Ma Y, Li M, Ren S, Fu X, Huang H, Zheng Y. Crumpled Versus Flat Gold Nanosheets: Temperature-Regulated Synthesis and Their Plasmonic and Catalytic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4227-4235. [PMID: 33788565 DOI: 10.1021/acs.langmuir.1c00190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a high-yield synthesis of gold (Au) nanosheets with tunable size and surface morphology in the aqueous phase. In particular, crumpled and flat Au nanosheets with a thickness of ∼10 nm could be selectively produced in high purity when the reaction was conducted at room temperature and in an ice-water bath, respectively. Unlike Au nanoplates/nanoprisms in the form of well-defined triangles or hexagons documented in previous studies, the current products exhibit random in-plane branches or holes, together with wavy edges. Strong absorbance in the NIR region was observed for all the Au nanosheet products. When serving as electrocatalysts for the ethanol oxidation reaction, the current products exhibited an enhanced activity and operation stability, as compared to quasi-spherical counterparts.
Collapse
Affiliation(s)
- Gongguo Zhang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273115, P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Mengfan Li
- School of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Shan Ren
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaowei Fu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273115, P. R. China
| | - Hongwen Huang
- School of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yiqun Zheng
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273115, P. R. China
| |
Collapse
|
6
|
Chen J, Zhou Y, Wang W. Spontaneous Growth of Au Microflowers on Poly( N-isopropylacrylamide) Brushes-grafted-Graphene Oxide Films for Surface-enhanced Raman Spectroscopy. CHEM LETT 2020. [DOI: 10.1246/cl.200468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiajun Chen
- School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Road, Ningbo 315211, P. R. China
| | - Yumeng Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Road, Ningbo 315211, P. R. China
| | - Wenqin Wang
- School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Road, Ningbo 315211, P. R. China
| |
Collapse
|