1
|
Filbin CJ, Haque MH, Locke CK, Mallon CJ, Curtis K, Osho KE, Borotto NB, Tucker MJ, Odoh SO, Yang Y. Reversible Photochromism of 4,4'-Disubstituted 2,2'-Bipyridine in the Presence of SO 3. Chemphyschem 2024; 25:e202400150. [PMID: 38777787 DOI: 10.1002/cphc.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
We report an unusual photochromic behavior of 4,4'-disubstituted-2,2'-bipyridine. It was found that in the presence of a SO3 source and HCl, 2,2'-bipyridine-4,4'-dibutyl ester undergoes a color change from yellow to magenta in solution with maximum absorbance at 545 nm upon irradiation with 395 nm light. The photochromism is thermally reversible in solution. Different from the known bipyridine-based photoswitching pathways, the photo response does not involve any metal which form colored complexes or the formation of colored free radical cations like the photo-reduction of viologens. A combination of experimental and computational analysis was used to probe the mechanism. The results suggest the colored species to be a complex formed between N-oxide of the 2,2'-bipyridine-4,4'-dibutyl ester and SO2; the N-oxide and SO2 are formed from photoactivated oxidation of the bipyridine with SO3 serving as the oxygen source. This complex represents a new addition to the library of photoswitches that is easy to synthesize, reversible in solution, and of high fatigue resistance, making it a promising candidate for applications in photo-switchable materials and SO3 detection. We also demonstrated experimentally similar photochromic behaviors with 2,2'-bipyridine-containing polymers.
Collapse
Affiliation(s)
- Connor J Filbin
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Md Hasanul Haque
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Cameron K Locke
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Christopher J Mallon
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Kevin Curtis
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Kemi E Osho
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Nicholas B Borotto
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Ying Yang
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| |
Collapse
|
2
|
Zhang J, Zhou J, Zhou Q, Wu W, Zhang H, Lin X, Luo Q, Cao J, Ma H. Light-driven textile sensors with potential application of UV detection. RSC Adv 2023; 13:5266-5272. [PMID: 36819232 PMCID: PMC9937050 DOI: 10.1039/d2ra06607f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/09/2023] [Indexed: 02/19/2023] Open
Abstract
Smart textiles based on monitoring systems of health conditions, structural behaviour, and external environmental conditions have been presented as elegant solutions for the increasing demands of health care. In this study, cotton fabrics (CFs) were modified by a common strategy with a dipping-padding procedure using reduced graphene oxide (RGO) and a photosensitive dye, spiropyran (SP), which can detect environmental UV light. The morphology of the CF is observed by scanning electron microscopy (SEM) measurements showing that the topography structure of coatings is related to the SP content. The resistance of the textile sensors decreases after UV radiation, which may be attributed to the easier electron transmission on the coatings of the CF. With the increase of SP content, the introduction of a large amount of SP within the composites could cause discontinuous distributions of RGO in the fiber surfaces, preventing electron transmission within the coatings of the RGO. The surface wettability of the coatings and the sweat sensitivity are also studied before and after UV radiation.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Material and Textile Engineering, Jiaxing University Jiaxing 314001 China
| | - Jie Zhou
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Material and Textile Engineering, Jiaxing University Jiaxing 314001 China
| | - Qingqing Zhou
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Material and Textile Engineering, Jiaxing University Jiaxing 314001 China
| | - Wen Wu
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Material and Textile Engineering, Jiaxing University Jiaxing 314001 China
| | - Huanxia Zhang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Material and Textile Engineering, Jiaxing University Jiaxing 314001 China
| | - Xiangsong Lin
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Material and Textile Engineering, Jiaxing University Jiaxing 314001 China
| | - Qiulan Luo
- College of Fashion and Design, Jiaxing Nanhu UniversityJiaxing 314001ZhejiangChina
| | - Jianda Cao
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Material and Textile Engineering, Jiaxing University Jiaxing 314001 China
| | - Hui Ma
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Material and Textile Engineering, Jiaxing University Jiaxing 314001 China
| |
Collapse
|
3
|
Zhao JL, Li MH, Cheng YM, Zhao XW, Xu Y, Cao ZY, You MH, Lin MJ. Photochromic crystalline hybrid materials with switchable properties: Recent advances and potential applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Wang YW, Li MH, Zhang SQ, Fang X, Lin MJ. A Three-Component Donor-Acceptor Hybrid Framework with Low-Power X-ray-Induced Photochromism. Inorg Chem 2022; 61:8153-8159. [PMID: 35580155 DOI: 10.1021/acs.inorgchem.2c00381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Donor-acceptor (D-A) hybrid frameworks with visual X-ray photochromism at room temperature are fascinating because of their promising applications as X-ray detectors. Herein, a 3-fold interpenetrated D-A hybrid framework, [Eu(bcbp)1.5(DMF)(H2O)2][Co(CN)6]·4H2O·CH3OH (1), has been obtained by incorporating electron-rich Co(CN)63- into the electron-deficient europium viologen framework, which interestingly exhibits ultraviolet and low-power X-ray dual photochromism with a remarkable color change from brown to green. Experimental and theoretical studies revealed that the X-ray photochromic behavior of hybrid 1 could be attributed to its D-A hybrid structural feature increasing the extent of photoinduced electron transfer and thus photogenerated radical species upon X-ray irradiation. Meanwhile, due to the introduction of emissive lanthanide cations in the D-A system, hybrid 1 exhibits photomodulated luminescence properties.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Meng-Hua Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou 350002, China
| | - Xin Fang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Mei-Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.,College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
5
|
Zhu B, Jin Y, Chu J, Zuo M, Cui S. Metal-organic framework bearing new viologen ligand for ammonia and Cr 2O 7 2- sensing. RSC Adv 2022; 12:6951-6957. [PMID: 35424708 PMCID: PMC8982205 DOI: 10.1039/d2ra00599a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/23/2022] [Indexed: 01/03/2023] Open
Abstract
Three anionic metal-organic frameworks (MOFs) {[Zn3(BTEC)2(H2O)(4-BCBPY)]·(H2O)} n (1-3) (BTEC4- = 1,2,4,5-benzenetetracarboxylic acid anion, 4-BCBPY2+ = 1,1'-bis(4-cyanobenzyl)-4,4'-bipyridinium dication) were synthesized in the reaction of 1,2,4,5-benzenetetracarboxylic acid with different metal salts such as ZnNO3, ZnCl2, and ZnSO4, under solvothermal conditions in the presence of 1,1'-bis(4-cyanobenzyl)-4,4'-bipyridinium chloride. Single crystal X-ray diffraction analysis shows that compounds 1, 2 and 3 have MOF structures based on binuclear metal building units, which are connected by two protonated BTEC4- ligands and three zinc ions, and the viologen cation 4-BCBPY2+ is located in the channel to achieve charge balance. Compounds 1, 2 and 3 have good photosensitivity, respond to sunlight, UV light and blue ray, and turn blue. The D-A distance and π-π stacking distance of the discolored samples (1P, 2P and 3P) changed. In addition, the three compounds showed visible color changes to ammonia vapor, rapidly changing from white to blue. At the same time, the three compounds exhibited fluorescence quenching to ammonia vapor and Cr2O7 2-. It is further proved that compounds 1, 2 and 3 are fluorescent sensors with a low detection limit (for Cr2O7 2-: 10-5 M) and high sensitivity for ammonia vapor and Cr2O7 2-. It was found that photochromic behavior, ammonia sensing properties can be tuned by the nature of metal salts.
Collapse
Affiliation(s)
- Baili Zhu
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University Mudanjiang 157011 People's Republic of China
| | - Yunpeng Jin
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University Mudanjiang 157011 People's Republic of China
| | - Jingying Chu
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University Mudanjiang 157011 People's Republic of China
| | - Minghui Zuo
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University Mudanjiang 157011 People's Republic of China
| | - Shuxin Cui
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University Mudanjiang 157011 People's Republic of China
| |
Collapse
|
6
|
Kayani ABA, Kuriakose S, Monshipouri M, Khalid FA, Walia S, Sriram S, Bhaskaran M. UV Photochromism in Transition Metal Oxides and Hybrid Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100621. [PMID: 34105241 DOI: 10.1002/smll.202100621] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Limited levels of UV exposure can be beneficial to the human body. However, the UV radiation present in the atmosphere can be damaging if levels of exposure exceed safe limits which depend on the individual the skin color. Hence, UV photochromic materials that respond to UV light by changing their color are powerful tools to sense radiation safety limits. Photochromic materials comprise either organic materials, inorganic transition metal oxides, or a hybrid combination of both. The photochromic behavior largely relies on charge transfer mechanisms and electronic band structures. These factors can be influenced by the structure and morphology, fabrication, composition, hybridization, and preparation of the photochromic materials, among others. Significant challenges are involved in realizing rapid photochromic change, which is repeatable, reversible with low fatigue, and behaving according to the desired application requirements. These challenges also relate to finding the right synergy between the photochromic materials used, the environment it is being used for, and the objectives that need to be achieved. In this review, the principles and applications of photochromic processes for transition metal oxides and hybrid materials, photocatalytic applications, and the outlook in the context of commercialized sensors in this field are presented.
Collapse
Affiliation(s)
- Aminuddin Bin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Sruthi Kuriakose
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Mahta Monshipouri
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | | | - Sumeet Walia
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
- School of Engineering, RMIT University, Melbourne, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Madhu Bhaskaran
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| |
Collapse
|
7
|
Li MH, You MH, Lin MJ. Photochromism and photomagnetism in three cyano-bridged 3d-4f heterobimetallic viologen frameworks. Dalton Trans 2021; 50:4959-4966. [PMID: 33877194 DOI: 10.1039/d0dt04358c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The incorporation of photochromic moieties into coordination polymers is of particular interest because it can endow them with various switching functions such as electrical conductivity, luminescence, and magnetism. In this context, a viologen ligand as a photochromic moiety was incorporated into 3d-4f heterobimetallic hexacyanoferrates, resulting in three novel 3-D photochromic complexes with different metal cations, namely {[Ln(BCEbpy) M(CN)6 (H2O)4]·2H2O}n (denoted as CoDy, CoEu, and FeDy, Ln = Dy, Eu; M = Fe, Co, H2BCEbpy·2Br = N,N'-bis(carboxymethyl)-4,4'-bipyridinium dibromide). And the photoresponsive mechanism has been well discussed based on the solid UV-vis, IR, ESR, photoluminescence, and magnetism data. Moreover, accompanying the photochromic process, these unique complexes exhibit different photomagnetic behaviors upon UV-vis irradiation at RT because of the different ferromagnetic coupling interactions between photogenerated radicals and lanthanide cations.
Collapse
Affiliation(s)
- Meng-Hua Li
- Key Laboratory of Molecule Synthesis and Function Discovery, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, China350116.
| | | | | |
Collapse
|
8
|
Wang YW, Li MH, Zhang SQ, Fang X, Lin MJ. Photochromic and photocontrolled luminescent rare-earth D–A hybrid crystals based on rigid viologen acceptors. CrystEngComm 2021. [DOI: 10.1039/d1ce00789k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to the introduction of a strong electron donor, CoIII(CN)63−, into the structure, the rare-earth donor–acceptor (D–A) hybrid crystal shows enhanced photochromism. The coordinative Eu3+ cation is also beneficial toward improving the luminescence.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Meng-Hua Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, 350002, P.R. China
| | - Xin Fang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Mei-Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
- College of Materials Science and Engineering, Fuzhou University, 350116, China
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
9
|
Szukalski A, Haupa KA, Adamow A, Cheret Y, Hue R, El-Ghayoury A, Sahraoui B, Pisignano D, Mysliwiec J, Camposeo A. Photoactivated Refractive Index Anisotropy in Fluorescent Thiophene Derivatives. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:25465-25472. [PMID: 33282054 PMCID: PMC7706105 DOI: 10.1021/acs.jpcc.0c07455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Indexed: 06/12/2023]
Abstract
The optical control of anisotropy in materials is highly advantageous for many technological applications, including the real-time modulation of another light signal in photonic switches and sensors. Here, we introduce three thiophene derivatives with a donor-acceptor structure, which feature different positions of an electron-acceptor nitrile group, and both photoalignment and luminescence properties. Quantum chemical calculations highlight the presence of trans-forms stable at room temperature and metastable cis-isomers. Besides photoluminescence peaked at 440-460 nm and 0.4 ns lifetime, the three nonlinear optical chromophores exhibit photoinduced anisotropy of the refractive index closely depending on the specific molecular structure, with higher values of birefringence at lower driving signal being obtained for ortho substitution of the nitrile group. All-optical modulation of an external light beam at rates of hundreds of hertz is demonstrated in the fluorescent systems. This finding opens an interesting route to multispectral photonic switches embedded in the active layers of light-emitting devices.
Collapse
Affiliation(s)
- Adam Szukalski
- NEST,
Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Karolina A. Haupa
- Department
of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Daxue Road 1001, 30010 Hsinchu, Taiwan
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology, Fritz-Haber
Weg 2 (Geb. 30.44), D-76131 Karlsruhe, Germany
| | - Alina Adamow
- NEST,
Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Yohan Cheret
- MOLTECH-Anjou,
UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Raphael Hue
- MOLTECH-Anjou,
UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Abdelkrim El-Ghayoury
- MOLTECH-Anjou,
UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Bouchta Sahraoui
- MOLTECH-Anjou,
UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Dario Pisignano
- NEST,
Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
- Dipartimento
di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Jaroslaw Mysliwiec
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Andrea Camposeo
- NEST,
Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| |
Collapse
|
10
|
Li MH, Lv SL, You MH, Lin MJ. Three-component D-A hybrid heterostructures with enhanced photochromic, photomodulated luminescence and selective anion-sensing properties. Dalton Trans 2020; 49:13083-13089. [PMID: 32929431 DOI: 10.1039/d0dt02390f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As an emerging class of hybrid complexes, donor-acceptor (D-A) hybrid heterostructures with advantages of both photoactive organic and inorganic components have provided an excellent platform for the fabrication of multifunctional photoactive materials. In this context, we have demonstrated three novel host-guest D-A hybrid heterostructures, {[Ln(BCEbpy)(H2O)4][CoIII(CN)6]·4H2O}n (1 (Eu), 2 (Dy), 3 (Sm)), based on the anionic Co(CN)63- and cationic coordination layers assembled from a viologen functionalized tecton and Ln(NO)3. Due to the introduction of an electron donor, CoIII(CN)63-, the unique hybrid exhibits a highly sensitive and reversible photochromic transformation from light-yellow to brown upon UV-Vis irradiation. More interestingly, accompanied with this photochromic process, hybrid 1 simultaneously possesses a photomodulated fluorescence behaviour. In addition, hybrid 1 shows high sensitivity and selectivity towards Cr2O72- anions with a fairly small LOD of ca. 9.6 × 10-6 M.
Collapse
Affiliation(s)
- Meng-Hua Li
- Key Laboratory of Molecule Synthesis and Function Discovery, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350116, China.
| | | | | | | |
Collapse
|
11
|
Fujii T, Tanaka S, Hayashi S, Imoto H, Naka K. Dipyridinoarsole: a new class of stable and modifiable heteroatom-bridged bipyridines. Chem Commun (Camb) 2020; 56:6035-6038. [PMID: 32427246 DOI: 10.1039/d0cc02389b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herein, we report our experimental and computational investigations on a stable and modifiable As-bridged dipyridinoheterole, dipyridinoarsole. Oxidation of the arsenic atom changes the frontier orbital energies and quaternization of nitrogen atoms produces electrochromic materials. Dipyridinoarsole is suitable for practical applications due to its superior stability compared to its phosphole analogues.
Collapse
Affiliation(s)
- Toshiki Fujii
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gashokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | | | | | | | | |
Collapse
|