1
|
Chowdhury M, Esteban DA, Amin R, Román-Freijeiro C, Rösch EL, Etzkorn M, Schilling M, Ludwig F, Bals S, Salgueiriño V, Lak A. Organic Molecular Glues to Design Three-Dimensional Cubic Nano-assemblies of Magnetic Nanoparticles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:6865-6876. [PMID: 39070672 PMCID: PMC11270742 DOI: 10.1021/acs.chemmater.4c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Self-assembled magnetic nanoparticles offer next-generation materials that allow harnessing of their physicochemical properties for many applications. However, how three-dimensional nanoassemblies of magnetic nanoparticles can be synthesized in one-pot synthesis without excessive postsynthesis processes is still a bottleneck. Here, we propose a panel of small organic molecules that glue nanoparticle crystallites during the growth of particles to form large nanoassembled nanoparticles (NANs). We find that both carbonyl and carboxyl functional groups, presenting in benzaldehyde and benzoic acid, respectively, are needed to anchor with metal ions, while aromatic rings are needed to create NANs through π-π stacking. When benzyl alcohol, lacking carbonyl and carboxyl groups, is employed, no NANs are formed. NANs formed by benzoic acid reveal a unique combination of high magnetization and coercivity, whereas NANs formed by benzaldehyde show the largest exchange bias reported in nanoparticles. Surprisingly, our NANs show unconventional colloidal stability due to their unique nanoporous architectures.
Collapse
Affiliation(s)
- Mohammad
Suman Chowdhury
- Institute
for Electrical Measurement Science and Fundamental Electrical Engineering
and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | | | - Rabia Amin
- Institute
for Electrical Measurement Science and Fundamental Electrical Engineering
and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | | | - Enja Laureen Rösch
- Institute
for Electrical Measurement Science and Fundamental Electrical Engineering
and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | - Markus Etzkorn
- Institute
of Applied Physics, TU Braunschweig, Mendelssohnstraße 2, Braunschweig 38106, Germany
| | - Meinhard Schilling
- Institute
for Electrical Measurement Science and Fundamental Electrical Engineering
and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | - Frank Ludwig
- Institute
for Electrical Measurement Science and Fundamental Electrical Engineering
and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | - Sara Bals
- EMAT,
University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Verónica Salgueiriño
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- Departamento
de Física Aplicada, Universidade
de Vigo, Vigo 36310, Spain
| | - Aidin Lak
- Institute
for Electrical Measurement Science and Fundamental Electrical Engineering
and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| |
Collapse
|
2
|
Chowdhury MS, Rösch EL, Esteban DA, Janssen KJ, Wolgast F, Ludwig F, Schilling M, Bals S, Viereck T, Lak A. Decoupling the Characteristics of Magnetic Nanoparticles for Ultrahigh Sensitivity. NANO LETTERS 2023; 23:58-65. [PMID: 36584282 DOI: 10.1021/acs.nanolett.2c03568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunoassays exploiting magnetization dynamics of magnetic nanoparticles are highly promising for mix-and-measure, quantitative, and point-of-care diagnostics. However, how single-core magnetic nanoparticles can be employed to reduce particle concentration and concomitantly maximize assay sensitivity is not fully understood. Here, we design monodisperse Néel and Brownian relaxing magnetic nanocubes (MNCs) of different sizes and compositions. We provide insights into how to decouple physical properties of these MNCs to achieve ultrahigh sensitivity. We find that tricomponent-based Zn0.06Co0.80Fe2.14O4 particles, with out-of-phase to initial magnetic susceptibility χ″/χ0 ratio of 0.47 out of 0.50 for magnetically blocked ideal particles, show the ultrahigh magnetic sensitivity by providing a rich magnetic particle spectroscopy (MPS) harmonics spectrum despite bearing lower saturation magnetization than dicomponent Zn0.1Fe2.9O4 having high saturation magnetization. The Zn0.06Co0.80Fe2.14O4 MNCs, coated with catechol-based poly(ethylene glycol) ligands, measured by our benchtop MPS show 3 orders of magnitude better particle LOD than that of commercial nanoparticles of comparable size.
Collapse
Affiliation(s)
- Mohammad Suman Chowdhury
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | - Enja Laureen Rösch
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | | | - Klaas-Julian Janssen
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | - Florian Wolgast
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | - Meinhard Schilling
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Thilo Viereck
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| | - Aidin Lak
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Nahorniak M, Pasetto P, Greneche JM, Samaryk V, Auguste S, Rousseau A, Nosova N, Varvarenko S. Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:11-22. [PMID: 36703905 PMCID: PMC9830496 DOI: 10.3762/bjnano.14.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Different iron oxides (i.e., magnetite, maghemite, goethite, wüstite), particularly nanosized particles, show distinct effects on living organisms. Thus, it is of primary importance for their biomedical applications that the morphology and phase-structural state of these materials are investigated. The aim of this work was to obtain magnetic nanoparticles in a single reactor using Fe(III) acetylacetonate as the initial precursor for the synthesis of Fe(III) oleate or Fe(III) undecylate followed by their thermolysis in situ. We proposed a new approach, according to which the essential magnetite precursor (a complex salt of higher acids - Fe(III) alkanoates) is obtained in a solvent with a high boiling point via displacement reaction of acetylacetone with a higher acid from Fe(III) acetylacetonate during its elimination from the reaction mixture under vacuum conditions. Magnetic nanoparticles (NPM) were characterized in terms of morphology, hydrodynamic diameter, and composition via several techniques, such as transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, Fourier-transform infrared spectroscopy/attenuated total reflectance, 57Fe Mössbauer spectroscopy, and X-ray diffraction. The effect of unsaturated oleic (OA) and undecylenic (UA) acids, which are both used as a reagent and as a nanoparticle stabilizer, as well as the influence of their ratio to Fe(III) acetylacetonate on the properties of particles were investigated. Stable dispersions of NPM were obtained in 1-octadecene within the OA or UA ratio from 3.3 mol to 1 mol of acetylacetonate and up to 5.5 mol/mol. Below the mentioned limit, NPM dispersions were colloidally unstable, and at higher ratios no NPM were formed which could be precipitated by an applied magnetic field. Monodisperse nanoparticles of iron oxides were synthesized with a diameter of 8-13 nm and 11-16 nm using OA and UA, respectively. The organic shell that enables the particle to be dispersed in organic media, in the case of oleic acid, covers their inorganic core only with a layer similar to the monomolecular layer, whereas the undecylenic acid forms a thicker layer, which is 65% of the particle mass. The result is a significantly different resistance to oxidation of the nanoparticle inorganic cores. The core of the particles synthesized using oleic acid is composed of more than 90% of maghemite. When undecylenic acid is used for the synthesis, the core is composed of 75% of magnetite.
Collapse
Affiliation(s)
- Mykhailo Nahorniak
- Organic Chemistry department, Lviv Polytechnic National University, Bandera street 12, 79013, Lviv, Ukraine
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Pamela Pasetto
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS − Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Jean-Marc Greneche
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS − Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Volodymyr Samaryk
- Organic Chemistry department, Lviv Polytechnic National University, Bandera street 12, 79013, Lviv, Ukraine
| | - Sandy Auguste
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS − Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Anthony Rousseau
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS − Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Nataliya Nosova
- Organic Chemistry department, Lviv Polytechnic National University, Bandera street 12, 79013, Lviv, Ukraine
| | - Serhii Varvarenko
- Organic Chemistry department, Lviv Polytechnic National University, Bandera street 12, 79013, Lviv, Ukraine
| |
Collapse
|
4
|
Zhang J, Zhu A, Xu W, Li D, Zhang Y, Duan Z, Wang Y. Synthesis of isopropyl acetate by acetone method and its reaction mechanism. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Silvestri N, Gavilán H, Guardia P, Brescia R, Fernandes S, Samia ACS, Teran FJ, Pellegrino T. Di- and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications. NANOSCALE 2021; 13:13665-13680. [PMID: 34477642 PMCID: PMC8374679 DOI: 10.1039/d1nr01044a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/01/2021] [Indexed: 05/31/2023]
Abstract
Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly for this peculiar shape different from the conventional spherical nanoparticles (NPs), are relatively less investigated. In this work, we report on a non-hydrolytic synthesis approach to prepare mixed transition metal ferrite NCs. A series of NCs of mixed zinc-cobalt-ferrite were prepared and their magnetic theranostic properties were compared to those of cobalt ferrite or zinc ferrite NCs of similar sizes. For each of the nanomaterials, the synthesis parameters were adjusted to obtain NCs in the size range from 8 up to 15 nm. The chemical and structural nature of the different NCs was correlated to their magnetic properties. In particular, to evaluate magnetic losses, we compared the data obtained from calorimetric measurements to the data measured by dynamic magnetic hysteresis obtained under alternating magnetic field (AMF) excitation. Cobalt-ferrite and zinc-cobalt ferrite NCs showed high specific adsorption rate (SAR) values in aqueous solutions but their heating ability was drastically suppressed once in viscous media even for NCs as small as 12 nm. On the other hand, non-stoichiometric zinc-ferrite NCs showed significant but lower SAR values than the other ferrites, but these zinc-ferrite NCs preserved almost unaltered their heating trend in viscous environments. Also, the presence of zinc in the crystal lattice of zinc-cobalt ferrite NCs showed increased contrast enhancement for MRI with the highest T2 relaxation time and in the MPI signal with the best point spread function and signal-to-noise ratio in comparison to the analogue cobalt-ferrite NC. Among the different compositions investigated, non-stoichiometric zinc-ferrite NCs can be considered the most promising material as a multifunctional theranostic platform for MHT, MPI and MRI regardless of the media viscosity in which they will be applied, while ensuring the best biocompatibility with respect to the cobalt ferrite NCs.
Collapse
Affiliation(s)
| | - Helena Gavilán
- Istituto Italiano di TecnologiaVia Morego 3016163 GenovaItaly
| | - Pablo Guardia
- Istituto Italiano di TecnologiaVia Morego 3016163 GenovaItaly
- IREC-Catalonia Institute for Energy Research, Jardins de les Dones de Negre 1Sant Adria de Besos08930 BarcelonaSpain
| | - Rosaria Brescia
- Istituto Italiano di TecnologiaVia Morego 3016163 GenovaItaly
| | | | - Anna Cristina S. Samia
- Department of Chemistry, Case Western Reserve University10900 Euclid AvenueClevelandOH 44106USA
| | - Francisco J. Teran
- iMdea Nanociencia, Campus Universitario de Cantoblanco28049 MadridSpain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC)28049 MadridSpain
| | | |
Collapse
|
6
|
Lak A, Disch S, Bender P. Embracing Defects and Disorder in Magnetic Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002682. [PMID: 33854879 PMCID: PMC8025001 DOI: 10.1002/advs.202002682] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/30/2020] [Indexed: 05/22/2023]
Abstract
Iron oxide nanoparticles have tremendous scientific and technological potential in a broad range of technologies, from energy applications to biomedicine. To improve their performance, single-crystalline and defect-free nanoparticles have thus far been aspired. However, in several recent studies, defect-rich nanoparticles outperform their defect-free counterparts in magnetic hyperthermia and magnetic particle imaging (MPI). Here, an overview on the state-of-the-art of design and characterization of defects and resulting spin disorder in magnetic nanoparticles is presented with a focus on iron oxide nanoparticles. The beneficial impact of defects and disorder on intracellular magnetic hyperthermia performance of magnetic nanoparticles for drug delivery and cancer therapy is emphasized. Defect-engineering in iron oxide nanoparticles emerges to become an alternative approach to tailor their magnetic properties for biomedicine, as it is already common practice in established systems such as semiconductors and emerging fields including perovskite solar cells. Finally, perspectives and thoughts are given on how to deliberately induce defects in iron oxide nanoparticles and their potential implications for magnetic tracers to monitor cell therapy and immunotherapy by MPI.
Collapse
Affiliation(s)
- Aidin Lak
- Department of Physics and Center for NanoScienceLMU MunichAmalienstr. 54Munich80799Germany
| | - Sabrina Disch
- Department für ChemieUniversität zu KölnGreinstraße 4‐6Köln50939Germany
| | - Philipp Bender
- Department of Physics and Materials ScienceUniversity of Luxembourg162A avenue de la FaÏencerieLuxembourgL‐1511Grand Duchy of Luxembourg
- Present address:
Heinz Maier‐Leibnitz Zentrum (MLZ)Technische Universität MünchenD‐85748GarchingGermany
| |
Collapse
|