1
|
Huang W, Yang G, Xu Q, Zhan M, Yao L, Li H, Xiao F, Chen Z, Zhao X, Li W, Zhao W, Zhang F, Li Y, Lu L. One-Pot, Open-Air Synthesis of Flexible and Degradable Multifunctional Polymer Composites with Adhesion, Water Resistance, Self-Healing, Facile Drug Loading, and Sustained Release Properties. Macromol Biosci 2023; 23:e2200442. [PMID: 36623250 DOI: 10.1002/mabi.202200442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/17/2022] [Indexed: 01/11/2023]
Abstract
Developing proper wound management via wound dressings represents a global challenge. Ideal wound dressings shall encompass multiple integrated functionalities for variable, complex scenarios; however, this is challenging due to the complex molecular design and synthesis process. Here, polymer composites, cross-linked poly(styrene oxide-co-hexaphenylcyclotrisiloxane)/crosslinked poly(hexaphenylcyclotrisiloxane) (cP(SO-co-HPCTS)/cPHPCTS) with multiple functionalities are prepared by a one-step, open-air method using catalytic ring-opening polymerization. The introduction of a mobile polymer cP(SO-co-HPCTS) endows the composite with good flexibility and self-healing properties at human body temperature. The hydrophobic groups in the main chain provide hydrophobicity and good water resistance, while the hydroxyl groups contained in the end groups enable good adhesion properties. Drugs can be efficiently loaded by blending and then sustainably release from the polymer composite. The material can rapidly degrade in a tetrahydrofuran solution of tetrabutylammonium fluoride due to its SiOSi bonds. The facile, one-step, open-air synthesis procedure and multiple functional properties integrated into the composites provide good prospects for their extensive application and batch production as wound dressing materials.
Collapse
Affiliation(s)
- Wen Huang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P. R. China
| | - Guang Yang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Qingbo Xu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Lijuan Yao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Honghui Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Fengfeng Xiao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Zirun Chen
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou, 535011, P. R. China
| | - Xiaoguang Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Wenting Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Wei Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Fujun Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P. R. China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| |
Collapse
|
2
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 PMCID: PMC11610523 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
3
|
Rosales-Rojas R, Zuñiga-Bustos M, Salas-Sepúlveda F, Galaz-Araya C, Zamora RA, Poblete H. Self-Organization Dynamics of Collagen-like Peptides Crosslinking Is Driven by Rose-Bengal-Mediated Electrostatic Bridges. Pharmaceutics 2022; 14:pharmaceutics14061148. [PMID: 35745721 PMCID: PMC9231032 DOI: 10.3390/pharmaceutics14061148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
The present work focuses on the computational study of the structural micro-organization of hydrogels based on collagen-like peptides (CLPs) in complex with Rose Bengal (RB). In previous studies, these hydrogels computationally and experimentally demonstrated that when RB was activated by green light, it could generate forms of stable crosslinked structures capable of regenerating biological tissues such as the skin and cornea. Here, we focus on the structural and atomic interactions of two collagen-like peptides (collagen-like peptide I (CLPI), and collagen-like peptide II, (CLPII)) in the presence and absence of RB, highlighting the acquired three-dimensional organization and going deep into the stabilization effect caused by the dye. Our results suggest that the dye could generate a ternary ground-state complex between collagen-like peptide fibers, specifically with positively charged amino acids (Lys in CLPI and Arg in CLPII), thus stabilizing ordered three-dimensional structures. The discoveries generated in this study provide the structural and atomic bases for the subsequent rational development of new synthetic peptides with improved characteristics for applications in the regeneration of biological tissues during photochemical tissue bonding therapies.
Collapse
Affiliation(s)
- Roberto Rosales-Rojas
- Center for Bioinformatics, Simulation and Modelling, Facultad de Ingeniería, Universidad de Talca, Talca 3465548, Chile; (R.R.-R.); (M.Z.-B.); (F.S.-S.); (C.G.-A.)
- Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Facultad de Ingeniería, Universidad de Talca, Talca 3465548, Chile
| | - Matías Zuñiga-Bustos
- Center for Bioinformatics, Simulation and Modelling, Facultad de Ingeniería, Universidad de Talca, Talca 3465548, Chile; (R.R.-R.); (M.Z.-B.); (F.S.-S.); (C.G.-A.)
| | - Francisca Salas-Sepúlveda
- Center for Bioinformatics, Simulation and Modelling, Facultad de Ingeniería, Universidad de Talca, Talca 3465548, Chile; (R.R.-R.); (M.Z.-B.); (F.S.-S.); (C.G.-A.)
| | - Constanza Galaz-Araya
- Center for Bioinformatics, Simulation and Modelling, Facultad de Ingeniería, Universidad de Talca, Talca 3465548, Chile; (R.R.-R.); (M.Z.-B.); (F.S.-S.); (C.G.-A.)
- Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Facultad de Ingeniería, Universidad de Talca, Talca 3465548, Chile
| | - Ricardo A. Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (R.A.Z.); (H.P.)
| | - Horacio Poblete
- Center for Bioinformatics, Simulation and Modelling, Facultad de Ingeniería, Universidad de Talca, Talca 3465548, Chile; (R.R.-R.); (M.Z.-B.); (F.S.-S.); (C.G.-A.)
- Correspondence: (R.A.Z.); (H.P.)
| |
Collapse
|
4
|
Tang N, Zhang R, Zheng Y, Wang J, Khatib M, Jiang X, Zhou C, Omar R, Saliba W, Wu W, Yuan M, Cui D, Haick H. Highly Efficient Self-Healing Multifunctional Dressing with Antibacterial Activity for Sutureless Wound Closure and Infected Wound Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106842. [PMID: 34741350 DOI: 10.1002/adma.202106842] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Indexed: 05/17/2023]
Abstract
Wound healing represents a major clinical and public healthcare problem that is frequently challenged by infection risks, detrimental consequences on the surrounding tissues, and difficulties to monitor the healing process. Here we report on a novel self-healing, antibacterial, and multifunctional wound dressing for sutureless wound closure and real-time monitoring of the healing parameters. The self-healing elastomer contains cetyltrimethylammonium bromide (CTAB) and has high mechanical toughness (35 MJ m-3 ), biocompatibility, and outstanding antibacterial activity (bactericidal rate is ≈90% in 12 h), enabling the wound dressing to effectively inhibit bacterial growth and accelerate infected wound healing. In vivo tests based on full-thickness skin incision model shows that the multifunctional wound dressing can help in contracting wound edges and facilitate wound closure and healing, as could be evidenced by notably dense and well-organized collagen deposition. The test provides an evidence that the integrated sensor array within the multifunctional wound dressing can monitor temperature, pH, and glucose level of the wound area in real-time, providing reliable and timely information of the condition of the wound. Ultimately, the reported multifunctional dressing would be of high value in managing the burden associated with wound healing via personalised monitoring and treatment approaches, digital and other people-centred solutions for health care.
Collapse
Affiliation(s)
- Ning Tang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Rongjun Zhang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Jing Wang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Muhammad Khatib
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Xue Jiang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Cheng Zhou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Rawan Omar
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Walaa Saliba
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| |
Collapse
|
5
|
An Insight into the Role of Non-Porphyrinoid Photosensitizers for Skin Wound Healing. Int J Mol Sci 2020; 22:ijms22010234. [PMID: 33379392 PMCID: PMC7795024 DOI: 10.3390/ijms22010234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
The concept behind photodynamic therapy (PDT) is being successfully applied in different biomedical contexts such as cancer diseases, inactivation of microorganisms and, more recently, to improve wound healing and tissue regeneration. The effectiveness of PDT in skin treatments is associated with the role of reactive oxygen species (ROS) produced by a photosensitizer (PS), which acts as a "double agent". The release of ROS must be high enough to prevent microbial growth and, simultaneously, to accelerate the immune system response by recruiting important regenerative agents to the wound site. The growing interest in this subject is reflected by the increasing number of studies concerning the optimization of relevant experimental parameters for wound healing via PDT, namely, light features, the structure and concentration of the PS, and the wound type and location. Considering the importance of developing PSs with suitable features for this emergent topic concerning skin wound healing, in this review, a special focus on the achievements attained for each PS class, namely, of the non-porphyrinoid type, is given.
Collapse
|