1
|
Li Y, Jin Y, Chen H, Zhou R, Mei J, Mao Z. A Visible Light-Responsive, Fast Room-Temperature Self- Healing, Mechanically Robust, Antibacterial Waterborne Polyurethane Based on Triple Dynamic Bonds. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20307-20323. [PMID: 40110726 DOI: 10.1021/acsami.5c01535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Despite the recent rapid advancements in room-temperature self-healing waterborne polyurethanes, imparting fast self-healing ability while concurrently maintaining robust mechanical performance of waterborne polyurethanes remains a formidable challenge. Herein, we propose a molecular structure design strategy for developing visible light-responsive, room-temperature self-healing, and antibacterial waterborne polyurethane (DMZWPU) containing triple dynamic bonds of diselenide bonds, multiple hydrogen bonds, and Zn(II)-carboxylate coordination bonds. This innovative approach effectively balances the tensile stress, fracture toughness, and self-healing ability of the material. Thanks to the synergy of the three dynamic bonds, the resulting DMZWPU film demonstrates a tensile stress of 40.32 MPa and a fracture toughness of 119.29 MJ/m3, respectively. Furthermore, based on the dynamic characteristics of three dynamic bonds and the dual induction of trace ethanol and visible light, the damaged DMZWPU film can recover more than 85% of the tensile stress at room temperature within 2 h. These performances outperform those of most of the currently reported room-temperature self-healable polymers (healing efficiency >80%). Due to the combined action of selenium and zinc ions, the DWZWPU film exhibits excellent antibacterial properties (sterilization rate of 100% in 24 h). Finally, the DMZWPU emulsion is effectively applied for leather finishing processes, and the results show that the DMZWPU coating exhibits excellent folding resistance, wear resistance, and room-temperature self-healing function, as well as enhanced water resistance and dry friction resistance. In summary, this study provides a novel perspective for the development of waterborne polyurethane with high mechanical performances and rapid self-healable ability at room temperature.
Collapse
Affiliation(s)
- Yupeng Li
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Yong Jin
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Haonan Chen
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Rong Zhou
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jiangyang Mei
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Zhexian Mao
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Xue S, Tang N, Zhou C, Fang S, Haick H, Sun J, Wu X. Anti-Wound Dehiscence and Antibacterial Dressing with Highly Efficient Self-Healing Feature for Guided Bone Regeneration Wound Closure. Adv Healthc Mater 2024; 13:e2304128. [PMID: 38411376 PMCID: PMC11468911 DOI: 10.1002/adhm.202304128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Guided bone regeneration (GBR) is a well-established technique for preserving and enhancing alveolar ridge structures. Success in GBR relies on fulfilling the Primary wound closure, Angiogenesis, Space maintenance, and Stability (PASS) principles. Conventional methods, involving titanium meshes and sutures, have drawbacks, including the need for secondary removal and customization challenges. To address these issues, an innovative multifunctional GBR dressing (MGD) based on self-healing elastomer (PUIDS) is introduced. MGD provides sutureless wound closure, prevents food particle accumulation, and maintains a stable environment for bone growth. It offers biocompatibility, bactericidal properties, and effectiveness in an oral GBR model. In summary, MGD provides a reliable, stable osteogenic environment for GBR, aligning with PASS principles and promoting superior post-surgery bone regeneration.
Collapse
Affiliation(s)
- Shenghao Xue
- Department of ProthodonticsShanghai Stomatological Hospital & School of StomatologyShanghai Key Laboratory of Craniomaxillofacial Development and DiseasesFudan UniversityShanghai200001P. R. China
| | - Ning Tang
- Precision Research Center for Refractory Diseases in Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Cheng Zhou
- School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Shuobo Fang
- Department of ProthodonticsShanghai Stomatological Hospital & School of StomatologyShanghai Key Laboratory of Craniomaxillofacial Development and DiseasesFudan UniversityShanghai200001P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion‐Israel Institute of TechnologyHaifa3200003Israel
| | - Jiao Sun
- Department of Dental MaterialsShanghai NinthPeople's HospitalShanghai Jiao Tong University School of MedicineNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011P. R. China
| | - Xueying Wu
- Department of ProthodonticsShanghai Stomatological Hospital & School of StomatologyShanghai Key Laboratory of Craniomaxillofacial Development and DiseasesFudan UniversityShanghai200001P. R. China
| |
Collapse
|
3
|
Hou Z, Wang T, Wang L, Wang J, Zhang Y, Zhou Q, Zhang Z, Li P, Huang W. Skin-adhesive and self-healing diagnostic wound dressings for diabetic wound healing recording and electrophysiological signal monitoring. MATERIALS HORIZONS 2024; 11:1997-2009. [PMID: 38362709 DOI: 10.1039/d3mh02064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Performing efficient wound management is essential for infected diabetic wounds due to the complex pathology. Flexible electronics have been recognized as one of the promising solutions for wound management. Herein, a kind of skin-adhesive and self-healing flexible bioelectronic was developed, which could be employed as a diagnostic wound dressing to record diabetic wound healing and monitor electrophysiological signals of the patients. The flexible substrate of diagnostic wound dressings showed excellent tissue adhesive (to various substrates including biological samples), self-healing (fracture strength restores by 96%), and intrinsic antibacterial properties (antibacterial ratio >96% against multidrug-resistant bacteria). The diagnostic wound dressings could record the glucose level (1-30 mM), pH values (4-7), and body temperature (18.8-40.0 °C) around the infected diabetic wounds. Besides, the dressings could help optimize treatment strategies based on electrophysiological signals of patients monitored in real-time. This study contributes to developing flexible bioelectronics for the diagnosis and management of diabetic wounds.
Collapse
Affiliation(s)
- Zishuo Hou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| | - Lei Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
| | - Yong Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Qian Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
| | - Zhengheng Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| |
Collapse
|
4
|
Stoy A, Jürgensen M, Millidoni C, Berthold C, Ramler J, Martínez S, Buchner MR, Lichtenberg C. Bismuth in Dynamic Covalent Chemistry: Access to a Bowl-Type Macrocycle and a Barrel-Type Heptanuclear Complex Cation. Angew Chem Int Ed Engl 2023; 62:e202308293. [PMID: 37522394 DOI: 10.1002/anie.202308293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Dynamic covalent chemistry (DCvC) is a powerful and widely applied tool in modern synthetic chemistry, which is based on the reversible cleavage and formation of covalent bonds. One of the inherent strengths of this approach is the perspective to reversibly generate in an operationally simple approach novel structural motifs that are difficult or impossible to access with more traditional methods and require multiple bond cleaving and bond forming steps. To date, these fundamentally important synthetic and conceptual challenges in the context of DCvC have predominantly been tackled by exploiting compounds of lighter p-block elements, even though heavier p-block elements show low bond dissociation energies and appear to be ideally suited for this approach. Here we show that a dinuclear organometallic bismuth compound, containing BiMe2 groups that are connected by a thioxanthene linker, readily undergoes selective and reversible cleavage of its Bi-C bonds upon exposure to external stimuli. The exploitation of DCvC in the field of organometallic heavy p-block chemistry grants access to unprecedented macrocyclic and barrel-type oligonuclear compounds.
Collapse
Affiliation(s)
- Andreas Stoy
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Malte Jürgensen
- Institute of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christina Millidoni
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Chantsalmaa Berthold
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Jacqueline Ramler
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Sebastián Martínez
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Magnus R Buchner
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Crispin Lichtenberg
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| |
Collapse
|
5
|
Yu X, Yang H, Ye Z, Chen K, Yuan T, Dong Y, Xiao R, Wang Z. Ultra-Tough Waterborne Polyurethane-Based Graft-Copolymerized Piezoresistive Composite Designed for Rehabilitation Training Monitoring Pressure Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303095. [PMID: 37340575 DOI: 10.1002/smll.202303095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Indexed: 06/22/2023]
Abstract
Effective training is crucial for patients who need rehabilitation for achieving optimal recovery and reducing complications. Herein, a wireless rehabilitation training monitoring band with a highly sensitive pressure sensor is proposed and designed. It utilizes polyaniline@waterborne polyurethane (PANI@WPU) as a piezoresistive composite material, which is prepared via the in situ grafting polymerization of PANI on the WPU surface. WPU is designed and synthesized with tunable glass transition temperatures ranging from -60 to 0 °C. Dipentaerythritol (Di-PE) and ureidopyrimidinone (UPy) groups are introduced, endowing the material with good tensile strength (14.2 MPa), toughness (62 MJ-1 m-3 ), and great elasticity (low permanent deformation: 2%). Di-PE and UPy enhance the mechanical properties of WPU by increasing the cross-linking density and crystallinity. Combining the toughness of WPU and the high-density microstructure derived by hot embossing technology, the pressure sensor exhibits high sensitivity (168.1 kPa-1 ), fast response time (32 ms), and excellent stability (10 000 cycles with 3.5% decay). In addition, the rehabilitation training monitoring band is equipped with a wireless Bluetooth module, which can be easily applied to monitor the rehabilitation training effect of patients using an applet. Therefore, this work has the potential to significantly broaden the application of WPU-based pressure sensors for rehabilitation monitoring.
Collapse
Affiliation(s)
- Xu Yu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Hua Yang
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Zhihao Ye
- School of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Kaifeng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Ting Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yabo Dong
- School of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Rui Xiao
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Zongrong Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Soft Machines and SmartDevices of Zhejiang Province, School of Aeronautics and Astronautics, Huanjiang Laboratory, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| |
Collapse
|
6
|
Li Y, Jin Y, Zeng W, Jin H, Shang X, Zhou R. Bioinspired Fast Room-Temperature Self-Healing, Robust, Adhesive, and AIE Fluorescent Waterborne Polyurethane via Hierarchical Hydrogen Bonds and Use as a Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35469-35482. [PMID: 37462218 DOI: 10.1021/acsami.3c05699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Developing a new generation of ecofriendly water-based polymeric materials that integrate mechanical robustness, fast room-temperature self-healing, adhesive, and fluorescence remains a formidable challenge. Herein, inspired by titin protein, a series of novel waterborne polyurethanes (WPU-CHZ-NAGA) containing irregular 6-fold and diamide hydrogen bonds are synthesized by introducing carbohydrazide (CHZ) and N,N-bis(2-hydroxyethyl)-3-amino propionyl glycinamide (HO-NAGA-OH) groups. The representative WPU-CHZ2-NAGA3 exhibits outstanding mechanical properties (tensile strength of 36.58 MPa, tearing energy of 81.2 kJ m-2, and toughness of 125.82 MJ m-3) and fast room-temperature self-healing ability with the aid of ethanol (≥90% within 8 h) originated from hierarchical hydrogen bonds. These properties are superior to those of most of the reported room-temperature self-healing polymer materials. Benefiting from plentiful hydrogen bonds, the WPU matrix achieves excellent adhesive properties without heating or adding curing agents. Interestingly, WPU-CHZ2-NAGA3 film emits inherent blue fluorescence due to the aggregation-induced emission effect of tertiary amine groups, and its potential applications in information encryption and anticounterfeiting are further demonstrated. Specially, a eutectic gel strain sensor is also fabricated with WPU-CHZ2-NAGA3 and deep eutectic solvent by a simple physical blending method, which can be used to monitor the movement of human fingers and wrists as well as the change in body temperature. In summary, this work provides new insight into the design and synthesis of multifunctional WPU with fast room-temperature self-healing and high mechanical properties.
Collapse
Affiliation(s)
- Yupeng Li
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yong Jin
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Wenhua Zeng
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Hongyu Jin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610065, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xiang Shang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rong Zhou
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Guo R, Zhang Q, Wu Y, Chen H, Liu Y, Wang J, Duan X, Chen Q, Ge Z, Zhang Y. Extremely Strong and Tough Biodegradable Poly(urethane) Elastomers with Unprecedented Crack Tolerance via Hierarchical Hydrogen-Bonding Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212130. [PMID: 36822221 DOI: 10.1002/adma.202212130] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/13/2023] [Indexed: 05/26/2023]
Abstract
The elastomers with the combination of high strength and high toughness have always been intensively pursued due to their diverse applications. Biomedical applications frequently require elastomers with biodegradability and biocompatibility properties. It remains a great challenge to prepare the biodegradable elastomers with extremely robust mechanical properties for in vivo use. In this report, we present a polyurethane elastomer with unprecedented mechanical properties for the in vivo application as hernia patches, which was obtained by the solvent-free reaction of polycaprolactone (PCL) and isophorone diisocyanate (IPDI) with N,N-bis(2-hydroxyethyl)oxamide (BHO) as the chain extender. Abundant and hierarchical hydrogen-bonding interactions inside the elastomers hinder the crystallization of PCL segments and facilitate the formation of uniformly distributed hard phase microdomains, which miraculously realize the extremely high strength and toughness with the fracture strength of 92.2 MPa and true stress of 1.9 GPa, while maintaining the elongation-at-break of ≈1900% and ultrahigh toughness of 480.2 MJ m-3 with the unprecedented fracture energy of 322.2 kJ m-2 . Hernia patches made from the elastomer via 3D printing technology exhibit outstanding mechanical properties, biocompatibility, and biodegradability. The robust and biodegradable elastomers demonstrate considerable potentials for in vivo applications.
Collapse
Affiliation(s)
- Rui Guo
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Youshen Wu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongbing Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yanghe Liu
- Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingjing Wang
- School of Pharmacy Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital and Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhishen Ge
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanfeng Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
8
|
Li YM, Zhang ZP, Rong MZ, Zhang MQ. Sunlight Stimulated Photochemical Self-Healing Polymers Capable of Re-Bonding Damages up to a Centimeter Below the Surface Even Out of the Reach of the Illumination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211009. [PMID: 36660910 DOI: 10.1002/adma.202211009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The development of photochemical self-healing polymers faces the the following bottlenecks: i) only the surface cracks can be restored and ii) materials' mechanical properties are lower. To break these bottlenecks, cross-linked poly(urethane-dithiocarbamate)s carrying photo-reversible dithiocarbamate bonds covalently linked to indole chromophores and benzyl groups are designed. The conjugated structure of the chromophore and benzyl enhances the addition reactivity of thiocarbonyl moiety and facilitates photo-cleavage of CS bond, so that transfer of the created radicals among dithiocarbamate linkages is promoted. Accordingly, reshuffling of the reversibly cross-linked networks via dynamic exchange between the activated dithiocarbamates is enabled in both surface layer and the interior upon exposure to the low-intensity ultraviolet (UV) light from the sun. It is found that the damages up to a centimeter below the surface can be effectively recovered in the sunshine, which greatly exceeds the maximum penetration distance of UV light (hundreds of microns). Besides, tensile strength and failure strain of the poly(urethane-dithiocarbamate) are superior to the reported photo-reversible polymers, achieving the record-high 33.8 MPa and 782.0% owing to the wide selectivity of soft/hard blocks, multiple interactions, and appropriate cross-linking architecture. The present work provides a novel paradigm of photo self-healing polymers capable of re-bonding cracks even out of the reach of the illumination.
Collapse
Affiliation(s)
- Yan Mei Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ze Ping Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
9
|
Wang M, Liu HY, Ke NW, Wu G, Chen SC, Wang YZ. Toward regulating biodegradation in stages of polyurethane copolymers with bicontinuous microphase separation. J Mater Chem B 2023; 11:3164-3175. [PMID: 36938684 DOI: 10.1039/d3tb00011g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
For typical biodegradable polymers, their overall performance almost declines exponentially to the degradation degree, which inevitably leads to a dilemma between the requirements of service life and retention time in the environment (both in vitro and in vivo). It is a great challenge to develop a biodegradable polymeric device with relatively stable performance in service while rapidly degrading out of service. Herein, we demonstrate an effective strategy to control degradation of biodegradable polymers in stages by constructing separated bicontinuous microphases with very different microphase degradation rates. First, polyurethane copolymers (PCL-b-CrP-U) containing two blocks, i.e., semicrystalline poly(ε-caprolactone) (PCL) blocks and amorphous random copolymer blocks (CrP) based on ε-CL and p-dioxanone (PDO), were synthesized. The microscopic morphology of PCL-b-CrP-U is investigated by an alkali-accelerated degradation experiment, which also demonstrates that the chain cleavage-induced crystallization during degradation resulted in a self-reinforcement by forming degradation residues with a scaffold-like morphology. The tensile test shows that PCL-b-CrP-U has excellent mechanical properties (1500% of elongation at break, a tensile strength of about 7.5 MPa, and an elastic modulus of 40.0 MPa). The degradation experiments with artificial pancreatic juice as a working medium reveal that PCL-b-CrP-U samples containing relatively high PDO units exhibit a three-stage degradation, i.e. an induction stage, a steady degradation stage and an accelerated degradation stage. The CrP phase preferentially hydrolyzes to form some microchannels due to its amorphous nature and relatively high hydrophilicity, effectively accelerating the entry of water and enzymes into the inner parts of the sample. Meanwhile, at this stage, those originally amorphous PCL segments gradually crystalize owing to their enhanced chain mobility induced by the chain cleavage, forming a "scaffold"-like structure, which effectively reinforces the sample to resist the damage from external force and therefore guarantees a relatively stable mechanical performance of PCL-b-CrP-U during service. With the further depletion of the CrP phase, the intermediate "scaffold"-like structure is also very beneficial to accelerate the degradation of residues owing to its large specific surface area, which is expected to be beneficial for preventing long-term retention of the implantation devices.
Collapse
Affiliation(s)
- Man Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China.
| | - Hong-Ying Liu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, China.
| | - Neng-Wen Ke
- Department of Pancreatic Surgery, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, China.
| | - Gang Wu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China.
| | - Si-Chong Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
10
|
Yin Y, Xu Y, Zhang X, Duan B, Xin Z, Bao C. Mechanically Strong and Tough Poly(urea-urethane) Thermosets Capable of Being Degraded under Mild Condition. Macromol Rapid Commun 2023; 44:e2200765. [PMID: 36419259 DOI: 10.1002/marc.202200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Indexed: 11/27/2022]
Abstract
The development of degradable polymeric materials such as degradable polyurethane or polyurea has been much highlighted for resource conservation and environmental protection. Herein, a facile strategy of constructing mechanically strong and tough poly(urea-urethane) (PUU) thermosets that can be degraded under mild conditions by using triple boron-urethane bonds (TBUB) as cross-linkers is demonstrated. By tailoring the molecular weight of the soft segment of the prepolymers, the mechanical performance can be finely controlled. Based on the cross-linking of TBUB units and hydrogen-binding interactions between TBUB linkages, the as-prepared PUU thermosets have excellent mechanical strength of ≈40.2 MPa and toughness of ≈304.9 MJ m-3 . Typically, the PBUU900 strip can lift a barbell with 60 000 times its own weight, showing excellent load-bearing capacity. Meanwhile, owing to the covalent cross-linking of TBUB units, all the PUU thermosets show initial decomposition temperatures over 290 °C, which are comparable to those of the traditional thermosets. Moreover, the TBUB cross-linked PUU thermosets can be easily degraded in a mild acid solution. The small pieces of the PBUU sample can be fully decomposed in 1 m HCl/THF solution for 3.5 h at room temperature.
Collapse
Affiliation(s)
- Yanlong Yin
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Yang Xu
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xuhao Zhang
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Baorong Duan
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zhirong Xin
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Chunyang Bao
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
11
|
Shi L, Jin Y, Bai L, Shang X, Li Y, Zhou R. Ultrasensitive
redox‐responsive ditelluride‐containing
fluorinated Gemini micelles for controlled drug release. J Appl Polym Sci 2023. [DOI: 10.1002/app.53719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Liangjie Shi
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Yong Jin
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Long Bai
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Xiang Shang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Yupeng Li
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Rong Zhou
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| |
Collapse
|
12
|
Xu L, Pan Y, Wang X, Xu Z, Tian H, Liu Y, Bu X, Jing H, Wang T, Liu Y, Liu M. Reconfigurable Touch Panel Based on a Conductive Thixotropic Supramolecular Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4458-4468. [PMID: 36629334 DOI: 10.1021/acsami.2c18471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Touch panels based on ionic conductive hydrogels perform excellent flexibility and biocompatibility, becoming promising candidates for the next-generation human-machine interface. However, these ionic hydrogels are usually composed of cross-linked polymeric networks that are difficult to be recycled or reconfigured, resulting in environmental issues. Herein, we designed a lithium ion-triggered gelation strategy to provide a conductive molecular hydrogel with thixotropy, which can be mechanically recycled or reconfigured at room temperature. In this hydrogel, lithium ions function as ionic bridges to construct supramolecular nanoassemblies and charge carriers to impart ionic conductivity. With polymer additives, the mechanical accommodability of the hydrogel was improved to meet the requirements of the daily use of touch panels. When this molecular hydrogel was fabricated into a surface capacitive touch panel, real-time sensing and reliable touch locating abilities were achieved. Remarkably, this touch panel can be reconfigured into 1D, 2D, and 3D device structures by a simple stirring-remolding method under ambient conditions. This work brings new insight into enriching the functionalities of hydrogel-based ionotronics with a supramolecular approach.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Ying Pan
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
| | - Xuanqi Wang
- School of Software, Shandong University, Jinan, Shandong250101, China
| | - Zhijun Xu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
| | - Huasheng Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Yue Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Xiaodan Bu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin130012, China
| | - Houchao Jing
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Minghua Liu
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, Beijing100190, China
| |
Collapse
|
13
|
Ma G, Wang Q, Ye J, He L, Guo L, Li X, Qiu T, Tuo X. The Multi-Step Chain Extension for Waterborne Polyurethane Binder of Para-Aramid Fabrics. Molecules 2022; 27:7588. [PMID: 36364417 PMCID: PMC9656495 DOI: 10.3390/molecules27217588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 10/03/2023] Open
Abstract
The comprehensive balance of the mechanical, interfacial, and environmental requirements of waterborne polyurethane (WPU) has proved challenging, but crucial in the specific application as the binder for high-performance polymer fiber composites. In this work, a multi-step chain extension (MCE) method was demonstrated using three kinds of small extenders and one kind of macro-chain extender (CE) for different chain extension steps. One dihydroxyl blocked small molecular urea (1,3-dimethylolurea, DMU) was applied as one of the CEs and, through the hybrid macrodiol/diamine systems of polyether, polyester, and polysiloxane, the WPU was developed by the step-by-step optimization on each chain extending reaction via the characterization on the H-bonding association, microphase separation, and mechanical properties. The best performance was achieved when the ratio of polyether/polyester was controlled at 6:4, while 2% of DMU and 1% of polysiloxane diamine was incorporated in the third and fourth chain extension steps, respectively. Under the condition, the WPU exhibited not only excellent tensile strength of 30 MPa, elongation of break of about 1300%, and hydrophobicity indicated by the water contact angle of 98°, but also effective interfacial adhesion to para-aramid fabrics. The peeling strength of the joint based on the polysiloxane incorporated WPU after four steps of chain extension was 430% higher than that prepared through only two steps of chain extension. Moreover, about 44% of the peeling strength was sustained after the joint had been boiling for 40 min in water, suggesting the potential application for high-performance fabric composites.
Collapse
Affiliation(s)
- Ge Ma
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qianshu Wang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Ye
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lifan He
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | - Longhai Guo
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Li
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | - Teng Qiu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinlin Tuo
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Anti-wetting surfaces with self-healing property: fabrication strategy and application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Jeong K, Kwak MJ, Kim Y, Lee Y, Mun H, Kim MJ, Cho BJ, Choi SQ, Im SG. Vapor-phase synthesis of a reagent-free self-healing polymer film with rapid recovery of toughness at room temperature and under ambient conditions. SOFT MATTER 2022; 18:6907-6915. [PMID: 36047286 DOI: 10.1039/d2sm00640e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A rapidly self-healable polymer is highly desirable but challenging to achieve. Herein, we developed an elastomeric film with instant self-healing ability within 10 s at room temperature. For this purpose, a series of copolymers of poly(glycidyl methacrylate-co-2-hydroxyethyl acrylate) (poly(GMA-co-HEA), or pGH) were synthesized in the vapor phase via an initiated chemical vapor deposition (iCVD) process. The elastomer includes a large amount of hydroxyl groups in the 2-hydroxyethyl acrylate (HEA) moiety capable of forming rapid, reversible hydrogen bonding at room temperature, while glycidyl methacrylate (GMA) with a rigid methacrylic backbone chain in the copolymer provides mechanical robustness to the elastic copolymer. With the optimized copolymer composition, pGH indeed showed instant recovery of the toughness within a minute; a completely divided specimen could be welded within a minute at room temperature and under ambient conditions simply by placing the pieces in close contact, which showed the outstanding recovery performance of elastic modulus (93.2%) and toughness (15.6 MJ m-3). The rapid toughness recovery without supplementing any external energy or reagents (e.g. light, temperature, or catalyst) at room temperature and under ambient conditions will be useful in future wearable electronics and soft robotics applications.
Collapse
Affiliation(s)
- Kihoon Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Moo Jin Kwak
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Youson Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Youjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hyeonwoo Mun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Min Ju Kim
- School of Electronic and Electrical Engineering, Dankook University, Gyeonggi-do 16890, Republic of Korea
| | - Byung Jin Cho
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
- KAIST Institute for NanoCentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
- KAIST Institute for NanoCentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Xu J, Zhu L, Nie Y, Li Y, Wei S, Chen X, Zhao W, Yan S. Advances and Challenges of Self-Healing Elastomers: A Mini Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5993. [PMID: 36079373 PMCID: PMC9457332 DOI: 10.3390/ma15175993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
In the last few decades, self-healing polymeric materials have been widely investigated because they can heal the damages spontaneously and thereby prolong their service lifetime. Many ingenious synthetic procedures have been developed for fabricating self-healing polymers with high performance. This mini review provides an impressive summary of the self-healing polymers with fast self-healing speed, which exhibits an irreplaceable role in many intriguing applications, such as flexible electronics. After a brief introduction to the development of self-healing polymers, we divide the development of self-healing polymers into five stages through the perspective of their research priorities at different periods. Subsequently, we elaborated the underlying healing mechanism of polymers, including the self-healing origins, the influencing factors, and direct evidence of healing at nanoscopic level. Following this, recent advance in realizing the fast self-healing speed of polymers through physical and chemical approaches is extensively overviewed. In particular, the methodology for balancing the mechanical strength and healing ability in fast self-healing elastomers is summarized. We hope that it could afford useful information for research people in promoting the further technical development of new strategies and technologies to prepare the high performance self-healing elastomers for advanced applications.
Collapse
Affiliation(s)
- Jun Xu
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lei Zhu
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yongjia Nie
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yuan Li
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shicheng Wei
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xu Chen
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wenpeng Zhao
- Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
17
|
Li Y, Jin Y, Fan W, Zhou R. A review on room-temperature self-healing polyurethane: synthesis, self-healing mechanism and application. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractPolyurethanes have been widely used in many fields due to their remarkable features such as excellent mechanical strength, good abrasion resistance, toughness, low temperature flexibility, etc. In recent years, room-temperature self-healing polyurethanes have been attracting broad and growing interest because under mild conditions, room-temperature self-healing polyurethanes can repair damages, thereby extending their lifetimes and reducing maintenance costs. In this paper, the recent advances of room-temperature self-healing polyurethanes based on dynamic covalent bonds, noncovalent bonds and combined dual or triple dynamic bonds are reviewed, focusing on their synthesis methods and self-healing mechanisms, and their mechanical properties, healing efficiency and healing time are also described in detial. In addition, the latest applications of room-temperature self-healing polyurethanes in the fields of leather coatings, photoluminescence materials, flexible electronics and biomaterials are summarized. Finally, the current challenges and future development directions of the room-temprature self-healing polyurethanes are highlighted. Overall, this review is expected to provide a valuable reference for the prosperous development of room-temperature self-healing polyurethanes.
Graphical abstract
Collapse
|
18
|
Ma J, Wen S, Yue Z. A stretchable and healable elastomer with shape memory capability based on multiple hydrogen bonds. RSC Adv 2022; 12:21512-21519. [PMID: 35975089 PMCID: PMC9347211 DOI: 10.1039/d2ra03250c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Although a wide range of self-healing materials have been reported by researchers, it is still a challenge to endow exceptional mechanical properties and shape memory characteristics simultaneously in a single material. Inspired by the structure of natural silk, herein, we have adopted a simple synthetic method to prepare a kind of elastomer (HM-PUs) with stiff, healable and shape memory capabilities assisted by multiple hydrogen bonds. The self-healing elastomer exhibits a maximum tensile strength of 39 MPa, toughness of 111.65 MJ m−3 and self-healing efficiency of 96%. Moreover, the recuperative efficiency of shape memory could reach 100%. The fundamental study of HM-PUs will facilitate the development of flexible electronics and medical materials. Although a wide range of self-healing materials have been reported by researchers, it is still a challenge to endow exceptional mechanical properties and shape memory characteristics simultaneously in a single material.![]()
Collapse
Affiliation(s)
- Jiacheng Ma
- School of Mechanics and Civil & Architecture, Northwestern Polytechnical University Xi'an 710129 PR China
| | - Shifeng Wen
- School of Mechanics and Civil & Architecture, Northwestern Polytechnical University Xi'an 710129 PR China
| | - Zhufeng Yue
- School of Mechanics and Civil & Architecture, Northwestern Polytechnical University Xi'an 710129 PR China
| |
Collapse
|
19
|
Xu H, Tu J, Ji J, Liang L, Li H, Li P, Zhang X, Gong Q, Guo X. Ultra-High-Strength Self-healing Supramolecular Polyurethane Based on Successive Loose Hydrogen-Bonded Hard Segment Structures. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Ion-cluster-mediated ultrafast self-healable ionoconductors for reconfigurable electronics. Nat Commun 2022; 13:3769. [PMID: 35773254 PMCID: PMC9247092 DOI: 10.1038/s41467-022-31553-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/21/2022] [Indexed: 12/27/2022] Open
Abstract
Implementing self-healing capabilities in a deformable platform is one of the critical challenges for achieving future wearable electronics with high durability and reliability. Conventional systems are mostly based on polymeric materials, so their self-healing usually proceeds at elevated temperatures to promote chain flexibility and reduce healing time. Here, we propose an ion-cluster-driven self-healable ionoconductor composed of rationally designed copolymers and ionic liquids. After complete cleavage, the ionoconductor can be repaired with high efficiency (∼90.3%) within 1 min even at 25 °C, which is mainly attributed to the dynamic formation of ion clusters between the charged moieties in copolymers and ionic liquids. By taking advantages of the superior self-healing performance, stretchability (∼1130%), non-volatility (over 6 months), and ability to be easily shaped as desired through cutting and re-assembly protocol, reconfigurable, deformable light-emitting electroluminescent displays are successfully demonstrated as promising electronic platforms for future applications. Implementing high-performance self-healing capability is one urgent challenge for deformable electronics. Here, the authors report ultra-fast ion cluster-mediated ionoconductors and their successful applications in future reconfigurable electronics.
Collapse
|
21
|
Liu Y, Zhang Z, Yang K, Chen D, Li Z. Novel near-infrared light-induced shape memory nonionic waterborne polyurethane composites based on iron gallate and dynamic phenol-carbamate network. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Liu Z, Guo W, Wang W, Guo Z, Yao L, Xue Y, Liu Q, Zhang Q. Healable Strain Sensor Based on Tough and Eco-Friendly Biomimetic Supramolecular Waterborne Polyurethane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6016-6027. [PMID: 35061368 DOI: 10.1021/acsami.1c21987] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stretchable sensors are essential for flexible electronics, which can be made with polymer elastomers as the matrix. The main challenge in producing practical devices is to obtain polymers with mechanical stability, eco-friendliness, and self-healing properties. Herein, we introduce urea bonds and 2-ureido-4[1H]-pyrimidinone (UPy) to synthesize tailored waterborne polyurethanes (WPU-UPy-x) with a hierarchical hydrogen bond (H-bond). Accordingly, sound tensile performance (strength: 53.33 MPa, toughness: 128.97 MJ m-3), satisfying deformation recovery, and good self-healing capability of the WPU-UPy-x film are demonstrated. With atomic force microscope characterization, we find that UPy groups contribute to the highly improved microphase separation of WPU-UPy-x, responsible for good mechanical properties. As a proof of concept, a strain sensor is successfully configured, thanks to the good interfacial interactions between the polyurethane matrix and the Ti3C2Tx MXene conductive filler, which features sensitive and stable performance for monitoring diverse human and mechanical motions. Intriguingly, this sensor is capable of self-healing after cutting and displays well-retained sensitivity to detect the stretched signal. The as-proposed design concept for healable and sensitive strain sensors can shed light on future wearable electronics.
Collapse
Affiliation(s)
- Zongxu Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Wei Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Wenyan Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zijian Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Laifeng Yao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ying Xue
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Qing Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
23
|
Tang N, Zhang R, Zheng Y, Wang J, Khatib M, Jiang X, Zhou C, Omar R, Saliba W, Wu W, Yuan M, Cui D, Haick H. Highly Efficient Self-Healing Multifunctional Dressing with Antibacterial Activity for Sutureless Wound Closure and Infected Wound Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106842. [PMID: 34741350 DOI: 10.1002/adma.202106842] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Indexed: 05/17/2023]
Abstract
Wound healing represents a major clinical and public healthcare problem that is frequently challenged by infection risks, detrimental consequences on the surrounding tissues, and difficulties to monitor the healing process. Here we report on a novel self-healing, antibacterial, and multifunctional wound dressing for sutureless wound closure and real-time monitoring of the healing parameters. The self-healing elastomer contains cetyltrimethylammonium bromide (CTAB) and has high mechanical toughness (35 MJ m-3 ), biocompatibility, and outstanding antibacterial activity (bactericidal rate is ≈90% in 12 h), enabling the wound dressing to effectively inhibit bacterial growth and accelerate infected wound healing. In vivo tests based on full-thickness skin incision model shows that the multifunctional wound dressing can help in contracting wound edges and facilitate wound closure and healing, as could be evidenced by notably dense and well-organized collagen deposition. The test provides an evidence that the integrated sensor array within the multifunctional wound dressing can monitor temperature, pH, and glucose level of the wound area in real-time, providing reliable and timely information of the condition of the wound. Ultimately, the reported multifunctional dressing would be of high value in managing the burden associated with wound healing via personalised monitoring and treatment approaches, digital and other people-centred solutions for health care.
Collapse
Affiliation(s)
- Ning Tang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Rongjun Zhang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Jing Wang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Muhammad Khatib
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Xue Jiang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Cheng Zhou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Rawan Omar
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Walaa Saliba
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| |
Collapse
|
24
|
Wang X, Xu J, Zhang Y, Wang T, Wang Q, Yang Z, Zhang X. High-strength, high-toughness, self-healing thermosetting shape memory polyurethane enabled by dual dynamic covalent bonds. Polym Chem 2022. [DOI: 10.1039/d2py00564f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smart materials that integrate multiple functions into one system will broaden the application range of materials, but there are still challenges to obtain a material with excellent shape memory, toughness,...
Collapse
|
25
|
Liu C, Yin Q, Yuan Q, Hao L, Shi L, Bao Y, Lyu B, Ma J. A wear-resistant, self-healing and recyclable multifunctional waterborne polyurethane coating with mechanical tunability based on hydrogen bonding and an aromatic disulfide structure. Polym Chem 2022. [DOI: 10.1039/d2py00958g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Considering a sustainable society, it is highly desirable to develop coatings that combine excellent wear-resistance, healing and recovery capabilities with tunable mechanical properties.
Collapse
Affiliation(s)
- Chao Liu
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Qing Yin
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qiming Yuan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lifen Hao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lei Shi
- Zhejiang Hexin Science and Technology Co., Ltd, Jia Xing 314003, China
| | - Yan Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Bin Lyu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
26
|
He C, Liang F, Veeramuthu L, Cho C, Benas J, Tzeng Y, Tseng Y, Chen W, Rwei A, Kuo C. Super Tough and Spontaneous Water-Assisted Autonomous Self-Healing Elastomer for Underwater Wearable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102275. [PMID: 34519441 PMCID: PMC8564429 DOI: 10.1002/advs.202102275] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Indexed: 05/19/2023]
Abstract
Self-healing soft electronic material composition is crucial to sustain the device long-term durability. The fabrication of self-healing soft electronics exposed to high moisture environment is a significant challenge that has yet to be fully achieved. This paper presents the novel concept of a water-assisted room-temperature autonomous self-healing mechanism based on synergistically dynamic covalent Schiff-based imine bonds with hydrogen bonds. The supramolecular water-assisted self-healing polymer (WASHP) films possess rapid self-healing kinetic behavior and high stretchability due to a reversible dissociation-association process. In comparison with the pristine room-temperature self-healing polymer, the WASHP demonstrates favorable mechanical performance at room temperature and a short self-healing time of 1 h; furthermore, it achieves a tensile strain of 9050%, self-healing efficiency of 95%, and toughness of 144.2 MJ m-3 . As a proof of concept, a versatile WASHP-based light-emitting touch-responsive device (WASHP-LETD) and perovskite quantum dot (PeQD)-based white LED backlight are designed. The WASHP-LETD has favorable mechanical deformation performance under pressure, bending, and strain, whereas the WASHP-PeQDs exhibit outstanding long-term stability even over a period exceeding one year in a boiling water environment. This paper provides a mechanically robust approach for producing eco-friendly, economical, and waterproof e-skin device components.
Collapse
Affiliation(s)
- Cyuan‐Lun He
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Fang‐Cheng Liang
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Loganathan Veeramuthu
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Chia‐Jung Cho
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Jean‐Sebastien Benas
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Yung‐Ru Tzeng
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Yen‐Lin Tseng
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Wei‐Cheng Chen
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Alina Rwei
- Department of Chemical EngineeringDelft University of TechnologyDelft2629 HZNetherlands
| | - Chi‐Ching Kuo
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| |
Collapse
|
27
|
Zhang Y, Chen F, Li Y, Qiu H, Zhang J, Yin S. Supramolecular Polymer Networks with Enhanced Mechanical Properties: The Marriage of Covalent Polymer and Metallacycle
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yue‐Yue Zhang
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Feng Chen
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Hua‐Yu Qiu
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Jin‐Jin Zhang
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Shou‐Chun Yin
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| |
Collapse
|
28
|
Li Z, Zhu YL, Niu W, Yang X, Jiang Z, Lu ZY, Liu X, Sun J. Healable and Recyclable Elastomers with Record-High Mechanical Robustness, Unprecedented Crack Tolerance, and Superhigh Elastic Restorability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101498. [PMID: 34062022 DOI: 10.1002/adma.202101498] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Spider silk is one of the most robust natural materials, which has extremely high strength in combination with great toughness and good elasticity. Inspired by spider silk but beyond it, a healable and recyclable supramolecular elastomer, possessing superhigh true stress at break (1.21 GPa) and ultrahigh toughness (390.2 MJ m-3 ), which are, respectively, comparable to and ≈2.4 times higher than those of typical spider silk, is developed. The elastomer has the highest tensile strength (ultimate engineering stress, 75.6 MPa) ever recorded for polymeric elastomers, rendering it the strongest and toughest healable elastomer thus far. The hyper-robust elastomer exhibits superb crack tolerance with unprecedentedly high fracture energy (215.2 kJ m-2 ) that even exceeds that of metals and alloys, and superhigh elastic restorability allowing dimensional recovery from elongation over 12 times. These extraordinary mechanical performances mainly originate from the meticulously engineered hydrogen-bonding segments, consisting of multiple acylsemicarbazide and urethane moieties linked with flexible alicyclic hexatomic spacers. Such hydrogen-bonding segments, incorporated between extensible polymer chains, aggregate to form geometrically confined hydrogen-bond arrays resembling those in spider silk. The hydrogen-bond arrays act as firm but reversible crosslinks and sacrificial bonds for enormous energy dissipation, conferring exceptional mechanical robustness, healability, and recyclability on the elastomer.
Collapse
Affiliation(s)
- Zequan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhiyong Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin university, Changchun, 130023, China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
29
|
Liu Y, Zhang Z, Wang J, Xie T, Sun L, Yang K, Li Z. Renewable tannic acid based self-healing polyurethane with dynamic phenol-carbamate network: Simultaneously showing robust mechanical properties, reprocessing ability and shape memory. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Hu J, Yang R, Zhang L, Chen Y, Sheng X, Zhang X. Robust, transparent, and self-healable polyurethane elastomer via dynamic crosslinking of phenol-carbamate bonds. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Lei L, Han L, Ma H, Zhang R, Li X, Zhang S, Li C, Bai H, Li Y. Well-Tailored Dynamic Liquid Crystal Networks with Anionically Polymerized Styrene-Butadiene Rubbers toward Modulating Shape Memory and Self-Healing Capacity. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lan Lei
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Han
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ruixue Zhang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuwen Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Songbo Zhang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chao Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongyuan Bai
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
32
|
Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing. Nat Commun 2021; 12:621. [PMID: 33504800 PMCID: PMC7841158 DOI: 10.1038/s41467-021-20931-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/24/2020] [Indexed: 11/29/2022] Open
Abstract
Self-repairable materials strive to emulate curable and resilient biological tissue; however, their performance is currently insufficient for commercialization purposes because mending and toughening are mutually exclusive. Herein, we report a carbonate-type thermoplastic polyurethane elastomer that self-heals at 35 °C and exhibits a tensile strength of 43 MPa; this elastomer is as strong as the soles used in footwear. Distinctively, it has abundant carbonyl groups in soft-segments and is fully amorphous with negligible phase separation due to poor hard-segment stacking. It operates in dual mechano-responsive mode through a reversible disorder-to-order transition of its hydrogen-bonding array; it heals when static and toughens when dynamic. In static mode, non-crystalline hard segments promote the dynamic exchange of disordered carbonyl hydrogen-bonds for self-healing. The amorphous phase forms stiff crystals when stretched through a transition that orders inter-chain hydrogen bonding. The phase and strain fully return to the pre-stressed state after release to repeat the healing process. Self-healing materials strive to emulate curable and resilient biological tissue but their performance is often insufficient for commercial applications because self-healing and toughening are mutually exclusive properties. Here, the authors report a tough and strong carbonate-type thermoplastic polyurethane elastomer that self-heals at ambient temperature.
Collapse
|
33
|
Hu J, Sun C, Li S, Yuan Y, Zhang Y. Heterotellurium-containing macrocycles towards degradable tellurium-functionalized polymers. Polym Chem 2021. [DOI: 10.1039/d1py00703c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We first disclose a facile strategy to synthesize a heterotellurium-containing macrocycle series, and then well-defined degradable poly(telluride-carbonate)s were obtained by ring-opening polymerization.
Collapse
Affiliation(s)
- Jieni Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Chuanhao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Siqi Li
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yuan Yuan
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
34
|
Jing T, Heng X, Guifeng X, Ling C, Pingyun L, Xiaode G. Highly stretchable, high efficiency room temperature self-healing polyurethane adhesive based on hydrogen bonds – applicable to solid rocket propellants. Polym Chem 2021. [DOI: 10.1039/d1py00439e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The introduction of weak hydrogen bonds based on the isophorone structure enables the polymer to have high stretchability and self-healing ability at room temperature to heal propellant damage.
Collapse
Affiliation(s)
- Tu Jing
- National Special Superfine Powder Engineering Research Center of China
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Xu Heng
- National Special Superfine Powder Engineering Research Center of China
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Xiang Guifeng
- National Special Superfine Powder Engineering Research Center of China
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Chen Ling
- National Special Superfine Powder Engineering Research Center of China
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Li Pingyun
- National Special Superfine Powder Engineering Research Center of China
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Guo Xiaode
- National Special Superfine Powder Engineering Research Center of China
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| |
Collapse
|
35
|
Xie T, Vogt BD. A Virtual Special Issue on Self-Healing Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49277-49280. [PMID: 33143431 DOI: 10.1021/acsami.0c18104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
36
|
Dzhardimalieva GI, Yadav BC, Kudaibergenov SE, Uflyand IE. Basic Approaches to the Design of Intrinsic Self-Healing Polymers for Triboelectric Nanogenerators. Polymers (Basel) 2020; 12:E2594. [PMID: 33158271 PMCID: PMC7694280 DOI: 10.3390/polym12112594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Triboelectric nanogenerators (TENGs) as a revolutionary system for harvesting mechanical energy have demonstrated high vitality and great advantage, which open up great prospects for their application in various areas of the society of the future. The past few years have seen exponential growth in many new classes of self-healing polymers (SHPs) for TENGs. This review presents and evaluates the SHP range for TENGs, and also attempts to assess the impact of modern polymer chemistry on the development of advanced materials for TENGs. Among the most widely used SHPs for TENGs, the analysis of non-covalent (hydrogen bond, metal-ligand bond), covalent (imine bond, disulfide bond, borate bond) and multiple bond-based SHPs in TENGs has been performed. Particular attention is paid to the use of SHPs with shape memory as components of TENGs. Finally, the problems and prospects for the development of SHPs for TENGs are outlined.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Moscow Region, Russia;
- Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India;
| | - Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan;
- Laboratory of Engineering Profile, Satbayev University, Almaty 050013, Kazakhstan
| | - Igor E. Uflyand
- Department of Chemistry, Southern Federal University, 344006 Rostov-on-Don, Russia
| |
Collapse
|