1
|
Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214544] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
Jin S, Gu F, Wang J, Ma X, Qian C, Lan Y, Han Q, Li J, Wang X, Zhang R, Qiao W, Ling L, Jin M. Elaborate interface design of SnS2/SnO2@C/rGO nanocomposite as a high-performance anode for lithium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Guan H, Feng D, Liu Q, Zeng T. A scalable ball milling strategy to endow SnS anode electrodes with free volume property for enhanced electrochemical performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj01221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SnS/G-x% anode with free volume has been fabricated by a scalable ball milling technology. The free volume effectively relief the volume expansion/shrinkage SnS, an optimized electrochemical performance is being made at graphite content of 15 wt%.
Collapse
Affiliation(s)
- Huibin Guan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Dong Feng
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi Liu
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tianbiao Zeng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Du J, Chai J, Li Q, Zhang W, Tang B. Application of two-dimensional layered Mo-MOF@ppy with high valency molybdenum in lithium-ion batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Xie H, Chen L, Zhang Y, Ma Y, Zhu B, Jiang T, Zhang J. Long-life SnS/TiO2/C stemming from nano-TiO2 @C complex hull as Li-ion battery anode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Kim J, Zhang Z, Sun J, Mo S, Yun U, Yun H, Liu L. SnS Nanosheets for Rapid and Effective Bacteria Sterilization Under Near-infrared Irradiation. Chemistry 2021; 27:15434-15439. [PMID: 34476846 DOI: 10.1002/chem.202102268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 01/07/2023]
Abstract
Today, the threat of pathogenic bacterial infection worldwide that leads to the increase of mortality rate strongly demands the development of new antibacterial agents that can kill bacteria quickly and effectively. Although there are a lot of antibacterial agents that have been developed so far, few studies on the antibacterial performance of SnS have been investigated at 808 nm laser. Here, we synthesized SnS nanosheets with strong near-infrared absorption performance and excellent antibacterial performance via a simple solvothermal synthesis route. The as-prepared SnS nanosheets showed excellent photothermal conversion efficiency (38.7 %), photodynamic performance, and photostability, and at the same time 99.98 % and 99.7 % sterilization effect against Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis (B. subtilis) under near-infrared irradiation (808 nm, 1.5 W/cm2 ). This study suggests that SnS nanosheets could be a promising candidate for antibacterial therapy owing to the synergetic effects of photothermal and photodynamic performance.
Collapse
Affiliation(s)
- JongGuk Kim
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China.,Department of Chemical Engineering, Laboratory of Functional nanomaterial, Kim Chaek University of Technology, Pyongyang, 950003, Korea
| | - Ze Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - JingYu Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - ShuDi Mo
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - UnHyok Yun
- Department of Chemical Engineering, Laboratory of Functional nanomaterial, Kim Chaek University of Technology, Pyongyang, 950003, Korea
| | - HuiGwang Yun
- Department of Chemical Engineering, Laboratory of Functional nanomaterial, Kim Chaek University of Technology, Pyongyang, 950003, Korea
| | - Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| |
Collapse
|
7
|
Sharma S, Mittal A, Singh Chauhan N, Makgwane PR, Kumari K, Maken S, Kumar N. Developments in visible-light active TiO2/SnX (X = S and Se) and their environmental photocatalytic applications – A mini-review. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
A Review of the Synthesis, Properties, and Applications of Bulk and Two-Dimensional Tin (II) Sulfide (SnS). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tin(II) sulfide (SnS) is an attractive semiconductor for solar energy conversion in thin film devices due to its bandgap of around 1.3 eV in its orthorhombic polymorph, and a band gap energy of 1.5–1.7 eV for the cubic polymorph—both of which are commensurate with efficient light harvesting, combined with a high absorption coefficient (10−4 cm−1) across the NIR–visible region of the electromagnetic spectrum, leading to theoretical power conversion efficiencies >30%. The high natural abundance and a relative lack of toxicity of its constituent elements means that such devices could potentially be inexpensive, sustainable, and accessible to most nations. SnS exists in its orthorhombic form as a layer structure similar to black phosphorus; therefore, the bandgap energy can be tuned by thinning the material to nanoscale dimensions. These and other properties enable SnS applications in optoelectronic devices (photovoltaics, photodetectors), lithium- and sodium-ion batteries, and sensors among others with a significant potential for a variety of future applications. The synthetic routes, structural, optical and electronic properties as well as their applications (in particular photonic applications and energy storage) of bulk and 2D tin(II) sulfide are reviewed herein.
Collapse
|