1
|
Rayat Pisheh H, Haghdel M, Jahangir M, Hoseinian MS, Rostami Yasuj S, Sarhadi Roodbari A. Effective and new technologies in kidney tissue engineering. Front Bioeng Biotechnol 2024; 12:1476510. [PMID: 39479295 PMCID: PMC11521926 DOI: 10.3389/fbioe.2024.1476510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Kidney disease encompasses a wide spectrum of conditions, ranging from simple infections to chronic kidney disease. When the kidneys are unable to filter blood and remove waste products, these abnormalities can lead to kidney failure. In severe cases of kidney failure, kidney transplantation is considered the only definitive treatment. Worldwide, the World Health Organization (WHO) repeatedly emphasizes the importance of organ donation and increasing transplantation rates. Many countries implement national programs to promote the culture of organ donation and improve patient access to kidney transplantation. The extent to which this procedure is performed varies across countries and is influenced by several factors, including the volume of organ donation, medical infrastructure, access to technology and health policies. However, a kidney transplant comes with challenges and problems that impact its success. Kidney tissue engineering is a new approach that shows promise for repairing and replacing damaged kidney tissue. This article reviews recent advances in kidney tissue engineering, focusing on engineered structures such as hydrogels, electrospinning, 3D bioprinting, and microfluidic systems. By mimicking the extracellular environment of the kidney, these structures provide suitable conditions for the growth and development of kidney cells. The role of these structures in the formation of blood vessels, the mimicry of kidney functions and the challenges in this field were also discussed. The results of this study show that kidney tissue engineering has high potential for treating kidney diseases and reducing the need for kidney transplantation. However, to achieve clinical application of this technology, further research is required to improve the biocompatibility, vascularization and long-term performance of engineered tissues.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobin Haghdel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboube Jahangir
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monireh Sadat Hoseinian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaghayegh Rostami Yasuj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Sarhadi Roodbari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Zhao X, Zhang Y, Wang P, Guan J, Zhang D. Construction of multileveled and oriented micro/nano channels in Mg doped hydroxyapitite bioceramics and their effect on mimicking mechanical property of cortical bone and biological performance of cancellous bone. BIOMATERIALS ADVANCES 2024; 161:213871. [PMID: 38692181 DOI: 10.1016/j.bioadv.2024.213871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Drawing on the structure and components of natural bone, this study developed Mg-doped hydroxyapatite (Mg-HA) bioceramics, characterized by multileveled and oriented micro/nano channels. These channels play a critical role in ensuring both mechanical and biological properties, making bioceramics suitable for various bone defects, particularly those bearing loads. Bioceramics feature uniformly distributed nanogrooves along the microchannels. The compressive strength or fracture toughness of the Mg-HA bioceramics with micro/nano channels formed by single carbon nanotube/carbon fiber (CNT/CF) (Mg-HA(05-CNT/CF)) are comparable to those of cortical bone, attributed to a combination of strengthened compact walls and microchannels, along with a toughening mechanism involving crack pinning and deflection at nanogroove intersections. The introduction of uniform nanogrooves also enhanced the porosity by 35.4 %, while maintaining high permeability owing to the capillary action in the oriented channels. This leads to superior degradation properties, protein adsorption, and in vivo osteogenesis compared with bioceramics with only microchannels. Mg-HA(05-CNT/CF) exhibited not only high strength and toughness comparable to cortical bone, but also permeability similar to cancellous bone, enhanced cell activity, and excellent osteogenic properties. This study presents a novel approach to address the global challenge of applying HA-based bioceramics to load-bearing bone defects, potentially revolutionizing their application in tissue engineering.
Collapse
Affiliation(s)
- Xueni Zhao
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Yu Zhang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Pengfei Wang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Jinxin Guan
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Dexin Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
3
|
Sun X, Chen S, Qu B, Wang R, Zheng Y, Liu X, Li W, Gao J, Chen Q, Zhuo D. Light-oriented 3D printing of liquid crystal/photocurable resins and in-situ enhancement of mechanical performance. Nat Commun 2023; 14:6586. [PMID: 37852967 PMCID: PMC10584836 DOI: 10.1038/s41467-023-42369-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Additive manufacturing technology has significantly impacted contemporary industries due to its ability to generate intricate computer-designed geometries. However, 3D-printed polymer parts often possess limited application potential, primarily because of their weak mechanical attributes. To overcome this drawback, this study formulates liquid crystal/photocurable resins suitable for the stereolithography technique by integrating 4'-pentyl-4-cyanobiphenyl with a photosensitive acrylic resin. This study demonstrates that stereolithography facilitates the precise modulation of the existing liquid crystal morphology within the resin. Furthermore, the orientation of the liquid crystal governs the oriented polymerization of monomers or prepolymers bearing acrylate groups. The products of this 3D printing approach manifest anisotropic behavior. Remarkably, when utilizing liquid crystal/photocurable resins, the resulting 3D-printed objects are approximately twice as robust as those created using commercial resins in terms of their tensile, flexural, and impact properties. This pioneering approach holds promise for realizing autonomously designed structures that remain elusive with present additive manufacturing techniques.
Collapse
Affiliation(s)
- Xiaolu Sun
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Shaoyun Chen
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China.
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China.
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China.
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China.
| | - Bo Qu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Rui Wang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Yanyu Zheng
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Xiaoying Liu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Wenjie Li
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Jianhong Gao
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China.
| | - Dongxian Zhuo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China.
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China.
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China.
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China.
| |
Collapse
|
4
|
Li N, Khan SB, Chen S, Aiyiti W, Zhou J, Lu B. Promising New Horizons in Medicine: Medical Advancements with Nanocomposite Manufacturing via 3D Printing. Polymers (Basel) 2023; 15:4122. [PMID: 37896366 PMCID: PMC10610836 DOI: 10.3390/polym15204122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Three-dimensional printing technology has fundamentally revolutionized the product development processes in several industries. Three-dimensional printing enables the creation of tailored prostheses and other medical equipment, anatomical models for surgical planning and training, and even innovative means of directly giving drugs to patients. Polymers and their composites have found broad usage in the healthcare business due to their many beneficial properties. As a result, the application of 3D printing technology in the medical area has transformed the design and manufacturing of medical devices and prosthetics. Polymers and their composites have become attractive materials in this industry because of their unique mechanical, thermal, electrical, and optical qualities. This review article presents a comprehensive analysis of the current state-of-the-art applications of polymer and its composites in the medical field using 3D printing technology. It covers the latest research developments in the design and manufacturing of patient-specific medical devices, prostheses, and anatomical models for surgical planning and training. The article also discusses the use of 3D printing technology for drug delivery systems (DDS) and tissue engineering. Various 3D printing techniques, such as stereolithography, fused deposition modeling (FDM), and selective laser sintering (SLS), are reviewed, along with their benefits and drawbacks. Legal and regulatory issues related to the use of 3D printing technology in the medical field are also addressed. The article concludes with an outlook on the future potential of polymer and its composites in 3D printing technology for the medical field. The research findings indicate that 3D printing technology has enormous potential to revolutionize the development and manufacture of medical devices, leading to improved patient outcomes and better healthcare services.
Collapse
Affiliation(s)
- Nan Li
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; (N.L.); (B.L.)
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- School of Education (Normal School), Dongguan University of Technology, Dongguan 523808, China
| | - Sadaf Bashir Khan
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shenggui Chen
- School of Art and Design, Guangzhou Panyu Polytechnic, Guangzhou 511483, China;
| | - Wurikaixi Aiyiti
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; (N.L.); (B.L.)
| | - Jianping Zhou
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; (N.L.); (B.L.)
| | - Bingheng Lu
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; (N.L.); (B.L.)
| |
Collapse
|
5
|
Kang X, Li X, Li Y, Duan Y. Strengthening and toughening
3D
printing of photocured resins by thermal expansion microspheres. J Appl Polym Sci 2022. [DOI: 10.1002/app.53516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaoqing Kang
- State Key Laboratory for Manufacturing Systems Engineering Xian Jiaotong University Xi'an China
| | - Xiaogang Li
- State Key Laboratory for Manufacturing Systems Engineering Xian Jiaotong University Xi'an China
| | - Yuexuan Li
- State Key Laboratory for Manufacturing Systems Engineering Xian Jiaotong University Xi'an China
| | - Yugang Duan
- State Key Laboratory for Manufacturing Systems Engineering Xian Jiaotong University Xi'an China
| |
Collapse
|
6
|
High-performance ene-thiol-acrylate photoresins suited for fabrication lightweight battery compartments of electric vehicles. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Weathering-Resistant Replicas Fabricated by a Three-Dimensional Printing Robotic Platform Induce Shoaling Behavior in Zebrafish. SENSORS 2022; 22:s22093481. [PMID: 35591170 PMCID: PMC9105678 DOI: 10.3390/s22093481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023]
Abstract
In recent decades, zebrafish have become an increasingly popular laboratory organism in several fields of research due to their ease of reproduction and rapid maturation. In particular, shoaling behavior has attracted the attention of many researchers. This article presents a fully printed robotic model used to sense and stimulate shoaling behavior in zebrafish (Danio rerio). Specifically, we exposed laboratory-fabricated replicated materials to critical acid/base/salt environments and evaluated the mechanical, optical, and surface properties after a three-month immersion period. Focusing on weatherability, these test samples maintained high tensile strength (~45 MPa) and relatively similar transmission (>85%T in the visible region), as determined by UV−vis/FTIR spectroscopy. Three-dimensional (3D) printing technology allowed printing of models with different sizes and appearances. We describe the sense of zebrafish responses to replicas of different sizes and reveal that replicas approximating the true zebrafish size (3 cm) are more attractive than larger replicas (5 cm). This observation suggests that larger replicas appear as predators to the zebrafish and cause fleeing behavior. In this study, we determined the weatherability of a high-transparency resin and used it to fabricate a fully printed driving device to induce shoaling by zebrafish. Finally, we demonstrate a weathering-resistant (for three months) 3D-printed decoy model with potential utility for future studies of outdoor shoaling behavior, and the result has the potential to replace the traditional metal frame devices used in outdoor experiments.
Collapse
|
8
|
Zhang Q, Bei HP, Zhao M, Dong Z, Zhao X. Shedding light on 3D printing: Printing photo-crosslinkable constructs for tissue engineering. Biomaterials 2022; 286:121566. [DOI: 10.1016/j.biomaterials.2022.121566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022]
|
9
|
Macías SI, Ruano G, Borràs N, Alemán C, Armelin E. UV
assisted photo reactive polyether‐polyesteramide resin for future applications in
3D
printing. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Steffi I. Macías
- Departament d'Enginyeria Química, EEBE Universitat Politècnica de Catalunya Barcelona Spain
| | - Guillem Ruano
- Departament d'Enginyeria Química, EEBE Universitat Politècnica de Catalunya Barcelona Spain
| | - Núria Borràs
- Departament d'Enginyeria Química, EEBE Universitat Politècnica de Catalunya Barcelona Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE Universitat Politècnica de Catalunya Barcelona Spain
- Barcelona Research Center for Multiscale Science, EEBE Barcelona Spain
| | - Elaine Armelin
- Departament d'Enginyeria Química, EEBE Universitat Politècnica de Catalunya Barcelona Spain
- Barcelona Research Center for Multiscale Science, EEBE Barcelona Spain
| |
Collapse
|
10
|
Exceptional Mechanical Properties and Heat Resistance of Photocurable Bismaleimide Ink for 3D Printing. MATERIALS 2021; 14:ma14071708. [PMID: 33808454 PMCID: PMC8037760 DOI: 10.3390/ma14071708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/13/2021] [Accepted: 03/28/2021] [Indexed: 12/20/2022]
Abstract
Photosensitive resins used in three-dimensional (3D) printing are characterized by high forming precision and fast processing speed; however, they often possess poor mechanical properties and heat resistance. In this study, we report a photocurable bismaleimide ink with excellent comprehensive performance for stereolithography (SLA) 3D printing. First, the main chain of bismaleimide with an amino group (BDM) was synthesized, and then, the glycidyl methacrylate was grafted to the amino group to obtain the bismaleimide oligomer with an unsaturated double bond. The oligomers were combined with reaction diluents and photo-initiators to form photocurable inks that can be used for SLA 3D printing. The viscosity and curing behavior of the inks were studied, and the mechanical properties and heat resistance were tested. The tensile strength of 3D-printed samples based on BDM inks could reach 72.6 MPa (166% of that of commercial inks), glass transition temperature could reach 155 °C (205% of that of commercial inks), and energy storage modulus was 3625 MPa at 35 °C (327% of that of commercial inks). The maximum values of T-5%, T-50%, and Tmax of the 3D samples printed by BDM inks reached 351.5, 449.6, and 451.9 °C, respectively. These photocured BDM inks can be used to produce complex structural components and models with excellent mechanical and thermal properties, such as car parts, building models, and pipes.
Collapse
|