1
|
Liu H, Zhu S, Zhang Y, Song H, Zhang Y, Chang Y, Hou W, Han G. Unveiling Superior Capacitive Behaviors of One-Pot Molten Salt-Engineered B, N Co-Doped Porous Carbon Sheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204119. [PMID: 37259261 DOI: 10.1002/smll.202204119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/08/2023] [Indexed: 06/02/2023]
Abstract
Heteroatom-doped porous carbon materials with distinctive surface properties and capacitive behavior have been accepted as promising candidates for supercapacitor electrodes. Currently, the researches mainly focus on developing facile synthetic method and unveiling the structure-activity relationship to further elevate their capacitive performance. Here, the B, N co-doped porous carbon sheet (BN-PCS) is constructed by one-pot pyrolysis of agar in KCl/KHCO3 molten salt system. In this process, the urea acts as directing agent to guide the formation of 2D sheet morphology, and the decomposition of KHCO3 and boric acid creates rich micro- and mesopores in the carbon framework. The specific capacitance of optimized BN-PCS reaches 361.1 F g-1 at a current density of 0.5 A g-1 in an aqueous KOH electrolyte. Impressively, the fabricated symmetrical supercapacitor affords a maximum energy density of 43.5 Wh kg-1 at the power density of 375.0 W kg-1 in 1.0 mol L-1 TEABF4 /AN electrolyte. It also achieves excellent long-term stability with capacitance retention of 91.1% and Columbic efficiency of 100% over 10 000 cycles. This study indicates one-pot molten salt method is effective in engineering advanced carbon materials for high-performance energy storage devices.
Collapse
Affiliation(s)
- Huichao Liu
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Sheng Zhu
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Hua Song
- School of Foreign Languages, Shanxi University, Taiyuan, 030006, P. R. China
| | - Ying Zhang
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Yunzhen Chang
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Wenjing Hou
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Gaoyi Han
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 030006, P. R. China
| |
Collapse
|
2
|
Liu H, Zhang F, Lin X, Wu J, Huang J. A hierarchical integrated 3D carbon electrode derived from gingko leaves via hydrothermal carbonization of H 3PO 4 for high-performance supercapacitors. NANOSCALE ADVANCES 2023; 5:786-795. [PMID: 36756496 PMCID: PMC9890899 DOI: 10.1039/d2na00758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/02/2023] [Accepted: 12/06/2022] [Indexed: 05/20/2023]
Abstract
Electrochemical ultracapacitors derived from green and sustainable materials could demonstrate superior energy output and an ultra-long cycle life owing to large accessible surface area and obviously shortened ion diffusion pathways. Herein, we have established an efficient strategy to fabricate porous carbon (GLAC) from sustainable gingko leaf precursors by a facile hydrothermal activation of H3PO4 and low-cost pyrolysis. In this way, GLAC with a hierarchically porous structure exhibits extraordinary adaptability toward a high energy/power supercapacitor (∼709 F g-1 at 1 A g-1) in an aqueous electrolyte (1 M KOH). Notably, the GLAC-2-based supercapacitor displays an ultra-high stability of ∼98.24% even after 10 000 cycles (10 A g-1) and an impressive energy density as large as ∼71 W h kg-1 at a power density of 1.2 kW kg-1. The results provide new insights that the facile synthetic procedure coupled with the excellent performance contributes to great potential for future application in the electrochemical energy storage field.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Fumin Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Xinyu Lin
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Jinggao Wu
- Key Laboratory of Rare Earth Optoelectronic Materials & Devices, College of Chemistry and Materials Engineering, Huaihua University Huaihua 418000 PR China
| | - Jing Huang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| |
Collapse
|
3
|
Yang S, Guo X, Lv H, Han C, Chen A, Tang Z, Li X, Zhi C, Li H. Rechargeable Iodine Batteries: Fundamentals, Advances, and Perspectives. ACS NANO 2022; 16:13554-13572. [PMID: 36001394 DOI: 10.1021/acsnano.2c06220] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lattice distortion and structure collapse are two intrinsic issues of intercalative-type electrodes derived from repeated ion shuttling. In contrast, rechargeable iodine batteries (RIBs) based on the conversion reaction of iodine stand out for high reversibility and satisfying voltage output characteristics no matter when dealing with both monovalent and multivalent ions. Foreseeable performance superiorities lead to an influx of considerable focus and thus a renaissance in RIBs. This review provides a comprehensive overview of the fundamental chemistry of RIBs from the perspectives of physicochemical properties, conversion mechanism, and existing issues. Furthermore, we refine the optimization strategies for high-performance RIBs, focusing on physical adsorption and chemical interaction strengthening, electrolytes regulation, and nanoscale-iodine design. Then the pros and cons of tremendous RIBs are compared and specified. Ultimately, we conclude with remaining challenges and perspectives to our best knowledge, which may inspire the construction of next-generation RIBs.
Collapse
Affiliation(s)
- Shuo Yang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Xun Guo
- City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Haiming Lv
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Cuiping Han
- Faculty of Materials Science and Energy Engineering/Low Dimensional Energy Materials Research Center, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Ao Chen
- City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Zijie Tang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xinliang Li
- City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Chunyi Zhi
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Hongfei Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
4
|
Porous Carbon Material Derived from Steam-Exploded Poplar for Supercapacitor: Insights into Synergistic Effect of KOH and Urea on the Structure and Electrochemical Properties. MATERIALS 2022; 15:ma15082741. [PMID: 35454436 PMCID: PMC9027541 DOI: 10.3390/ma15082741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023]
Abstract
The electrochemical performance of supercapacitors using porous carbon as electrodes is strongly affected by the fabrication process of carbon material. KOH is commonly used as an activator combined with urea as a nitrogen dopant. However, the roles of KOH and urea in pore structure configuration and the electrochemical behavior of porous carbon electrodes are still ambiguous. Herein, the optimum porous carbon is obtained when KOH and urea are used simultaneously. KOH is used as a pore-forming substance, whereas urea is employed as a nitrogen source for the nitrogen doping of porous carbon, which increases its defect sites while reducing the graphitization degree. More importantly, urea also expands pores as a pore-enlarging agent, inducing interconnected porous structures. As a result, a hierarchical porous structure is formed and ascribed to the synergistic effect of KOH and urea, and the specific surface area reached 3282 m2 g−1 for sample PC800-4. The specific capacitance is 319 F g−1 at 0.5 A g−1 with excellent cycling stability over 2500 cycles. Furthermore, the symmetric supercapacitor reaches an excellent energy density of 11.6 W h kg−1 under 70.0 W kg−1 in a 6 M KOH electrolyte. Our work contributes to the rational designation of the porous carbon structure for supercapacitor applications.
Collapse
|
5
|
Mohamed MG, Mansoure TH, Samy MM, Takashi Y, Mohammed AAK, Ahamad T, Alshehri SM, Kim J, Matsagar BM, Wu KCW, Kuo SW. Ultrastable Conjugated Microporous Polymers Containing Benzobisthiadiazole and Pyrene Building Blocks for Energy Storage Applications. Molecules 2022; 27:2025. [PMID: 35335388 PMCID: PMC8952824 DOI: 10.3390/molecules27062025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, conjugated microporous polymers (CMPs) have become important precursors for environmental and energy applications, compared with inorganic electrode materials, due to their ease of preparation, facile charge storage process, π-conjugated structures, relatively high thermal and chemical stability, abundance in nature, and high surface areas. Therefore, in this study, we designed and prepared new benzobisthiadiazole (BBT)-linked CMPs (BBT-CMPs) using a simple Sonogashira couplings reaction by reaction of 4,8-dibromobenzo(1,2-c;4,5-c')bis(1,2,5)thiadiazole (BBT-Br2) with ethynyl derivatives of triphenylamine (TPA-T), pyrene (Py-T), and tetraphenylethene (TPE-T), respectively, to afford TPA-BBT-CMP, Py-BBT-CMP, and TPE-BBT-CMP. The chemical structure and properties of BBT-CMPs such as surface areas, pore size, surface morphologies, and thermal stability using different measurements were discussed in detail. Among the studied BBT-CMPs, we revealed that TPE-BBT-CMP displayed high degradation temperature, up to 340 °C, with high char yield and regular, aggregated sphere based on thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Furthermore, the Py-BBT-CMP as organic electrode showed an outstanding specific capacitance of 228 F g-1 and superior capacitance stability of 93.2% (over 2000 cycles). Based on theoretical results, an important role of BBT-CMPs, due to their electronic structure, was revealed to be enhancing the charge storage. Furthermore, all three CMP polymers featured a high conjugation system, leading to improved electron conduction and small bandgaps.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Tharwat Hassan Mansoure
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Maha Mohamed Samy
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Yasuno Takashi
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
| | - Ahmed A. K. Mohammed
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11362, Saudi Arabia; (T.A.); (S.M.A.)
| | - Saad M. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11362, Saudi Arabia; (T.A.); (S.M.A.)
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Babasaheb M. Matsagar
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;
| | - Shiao-Wei Kuo
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80424, Taiwan
| |
Collapse
|
6
|
SDBS induced glucose urea derived microporous 2D carbon nanosheets as supercapacitor electrodes with excellent electrochemical performances. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Li H, Cao L, Zhang H, Tian Z, Zhang Q, Yang F, Yang H, He S, Jiang S. Intertwined carbon networks derived from Polyimide/Cellulose composite as porous electrode for symmetrical supercapacitor. J Colloid Interface Sci 2021; 609:179-187. [PMID: 34894552 DOI: 10.1016/j.jcis.2021.11.188] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023]
Abstract
Designing intertwined porous structure is highly desirable to improve the electrochemical performance of carbon materials for supercapacitor. In this contribution, three-dimensional (3D) carbonized polyimide/cellulose (CPC) composite is fabricated via a facile "one-step" carbonization, in which cellulose as cross-linked agent is capable of modulating the molecular structure of polyamic acid, thus ensuring the formation of intertwined porous networks in the obtained carbon skeleton. Benefitting from the high specific surface area (951 m2 g-1) and uniformly distributed pores, the optimized CPC-5 electrode exhibits an outstanding specific capacitance of 300F g-1 in 6.0 M KOH electrolyte. More impressively, the CPC-5 based symmetrical supercapacitor affords a high energy density of 22.6 Wh kg-1 at power density of 800 W kg-1, as well as an exceptional capacitance retention of 91.4% after 10,000 cycles. This work affords an effective strategy to yield a promising polyimide derived carbon material for high-performance supercapacitors.
Collapse
Affiliation(s)
- Huiling Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lihua Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huijun Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiwei Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Feng Yang
- School of Modern Equipment Manufacturing, Changzhou Institute of Industry Technology, Changzhou, 213164, China
| | - Haoqi Yang
- State Key Laboratory of New Building Materials, Beixin Academy of Sciences, Beijing New Building Materials (BNBM) Public Limited Company, Beijing, 102209, China.
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
High efficiency enrichment of organochlorine pesticides from water by nitrogenous porous carbon materials towards their extremely low concentration detection. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Nitrogen, sulfur co-doped hierarchical carbon encapsulated in graphene with "sphere-in-layer" interconnection for high-performance supercapacitor. J Colloid Interface Sci 2021; 599:443-452. [PMID: 33962205 DOI: 10.1016/j.jcis.2021.04.105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022]
Abstract
Rational design of electrode with hierarchical charge-transfer structure and good electronic conductivity is important to achieve high specific capacitance and energy density for supercapacitor, but it still remains a challenge. Herein, a nitrogen, sulfur co-doped pollen-derived carbon/graphene (PCG) composite with interconnected "sphere-in-layer" structure was fabricated, in which hierarchically pollen-derived carbon microspheres can serve as "porous spacers" to prevent the agglomeration of graphene nanosheets. The optimized PCG composite prepared with 0.5 wt% of graphene oxide (PCG-0.5) exhibited high specific capacitance (420Fg-1 at 1Ag-1), rate performance (280Fg-1 at 20Ag-1), and excellent cycling stability with 94% of capacitance retention after 10,000 cycles. The symmetrical device delivered a remarkable energy density of 31.3Whkg-1 in neutral medium. Moreover, density functional theory calculation revealed that PCG electrode possessed the accelerated charge transfer and enhanced electronic conductivity, thus ensuring a remarkable electrochemical performance. This work may afford an effective strategy for the development of biomass-derived carbon electrodes with novel charge-transfer structure toward supercapacitor applications.
Collapse
|
10
|
Zhang H, Lv X, Tian W, Hu Z, Ma K, Tan S, Ji J. One-pot fabrication of N, S co-doped carbon with 3D hierarchically porous frameworks and high electron/ion transfer rate for lithium-ion batteries. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Kim CK, Ji JM, Aftabuzzaman M, Kim HK. Three-dimensional tellurium and nitrogen Co-doped mesoporous carbons for high performance supercapacitors. RSC Adv 2021; 11:8628-8635. [PMID: 35423383 PMCID: PMC8695132 DOI: 10.1039/d0ra10374h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 11/21/2022] Open
Abstract
Tellurium-doped mesoporous carbon composite materials (Te/NMC) have been prepared by a facile intercalation method in the presence of nitrogen-doped mesoporous carbon (NMC) with tellurium powder, for the first time. The effects of the co-doped N and Te in the mesoporous carbon matrix on the physical/chemical properties and capacitance performances were investigated via the use of various characterization methods and electrochemical studies. The as-prepared NMC and Te/NMC materials were found to mainly be composed of mesopores and maintained the 3D hierarchical graphite-like structure with lots of defect sites. By intercalation of Te atoms into the NMC materials, 2.12 at% (atom%) of Te was doped into NMC and the specific surface area of Te/NMC (261.07 m2 g-1) decreased by about 1.5 times compared to that of NMC (437.96 m2 g-1). In electrochemical measurements as a supercapacitor (SC) electrode, the Te/NMC based electrode, even with its lower porosity parameters, exhibited a higher capacitive performance compared to the NMC-based electrode. These results for Te/NMC arise due to the pseudo-capacitive effect of doped Te and the increase in the capacitive area available from the formation of interconnections in the mesoporous carbons through Te-O bonds. As a result, the synergetic effect of the Te and N atoms enables Te/NMC to exhibit the highest specific capacitance of 197 F g-1 at a current density of 0.5 A g-1. Moreover, remarkable long-term cycling stability with the retention of more than 95% of the initial capacitance is observed for Te/NMC at a current density of 5 A g-1 and also for 1000 charge-discharge cycles.
Collapse
Affiliation(s)
- Chang Ki Kim
- Global GET-Future Laboratory, Department of Advanced Materials Chemistry, Korea University 2511 Sejong-ro Sejong 339-700 Korea
| | - Jung-Min Ji
- Global GET-Future Laboratory, Department of Advanced Materials Chemistry, Korea University 2511 Sejong-ro Sejong 339-700 Korea
| | - M Aftabuzzaman
- Global GET-Future Laboratory, Department of Advanced Materials Chemistry, Korea University 2511 Sejong-ro Sejong 339-700 Korea
| | - Hwan Kyu Kim
- Global GET-Future Laboratory, Department of Advanced Materials Chemistry, Korea University 2511 Sejong-ro Sejong 339-700 Korea
| |
Collapse
|
12
|
Synthesis of hierarchically porous boron-doped carbon material with enhanced surface hydrophobicity and porosity for improved supercapacitor performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Ji JM, Kim CK, Kim HK. Well-dispersed Te-doped mesoporous carbons as Pt-free counter electrodes for high-performance dye-sensitized solar cells. Dalton Trans 2021; 50:9399-9409. [PMID: 34223586 DOI: 10.1039/d0dt04372a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tellurium-doped carbon nanomaterial (Te-MC(P)) was newly developed by the soft-templated carbonization of the PAN-b-PBA copolymer with poly(3-hexyltellurophene). Te-MC(P) was characterized with various characterization methods, including the nitrogen sorption isotherm measurement (BET), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS), which reveal that the Te atoms are homogeneously dispersed in the three-dimensional hierarchical, graphite-like mesoporous carbon matrix with a Te doping level of 0.27 atom %. Based on the characterization results, the electrocatalytic ability of Te-MC(P) was evaluated by using a symmetrical dummy cell test with both Co(bpy)32+/3+ (bpy = 2,2'-bipyridine) and I-/I3- redox electrolytes as counter electrodes (CEs). The Te-MC(P) CEs showed remarkably lower charge-transfer resistance (Rct) values by approximately 10 times in the electrochemical impedance spectroscopy (EIS) measurement, compared to the counterpart platinum (Pt) and the tellurium-based material (Te-MC(A)), prepared with a telluric acid precursor that has a lower Te doping level of 0.15 at%. As a result, the excellent electrocatalytic ability of Te-MC(P) resulted in the improvement of photovoltaic performance. The power conversion efficiencies (PCEs) of Te-MC(P)-based dye-sensitized solar cells (DSSCs) were 12.69% for the Co(bpy)32+/3+ redox electrolyte with the SGT-021 porphyrin dye and 9.73% for the I-/I3- redox electrolyte with the N719 ruthenium dye. Furthermore, Te- MC(P) CEs exhibited remarkable electrochemical stability in the two redox electrolytes. These results could suggest that the Te-MC(P) CE is one of the best promising alternatives to Pt CEs as a low-cost, highly stable and efficient electrocatalytic CE for practical applications.
Collapse
Affiliation(s)
- Jung-Min Ji
- Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| | - Chang Ki Kim
- Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| | - Hwan Kyu Kim
- Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| |
Collapse
|
14
|
MnO2 nanosheets grown on N and P co-doped hollow carbon microspheres for high performance asymmetric supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136681] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|