1
|
Shin S, Ahn YR, Kim M, Choi J, Kim H, Kim HO. Mammalian Cell Membrane Hybrid Polymersomes for mRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38615329 DOI: 10.1021/acsami.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Cell membranes are structures essential to the cell function and adaptation. Recent studies have targeted cell membranes to identify their protective and interactive properties. Leveraging these attributes of cellular membranes and their application to vaccine delivery is gaining increasing prominence. This study aimed to fuse synthetic polymeric nanoparticles with cell membranes to develop cell membrane hybrid polymersomes (HyPSomes) for enhanced vaccine delivery. We designed a platform to hybridize cell membranes with methoxy-poly(ethylene glycol)-block-polylactic acid nanoparticles by using the properties of both components. The formed HyPSomes were optimized by using dynamic light scattering, transmission electron microscopy, and Förster resonance energy transfer, and their stability was confirmed. The synthesized HyPSomes replicated the antigenic surface of the source cells and possessed the stability and efficacy of synthetic nanoparticles. These HyPSomes demonstrated enhanced cellular uptake and translation efficiency and facilitated endosome escape. HyPSomes showed outstanding capabilities for the delivery of foreign mRNAs to antigen-presenting cells. HyPSomes may serve as vaccine delivery systems by bridging the gap between synthetic and natural systems. These systems could be used in other contexts, e.g., diagnostics and drug delivery.
Collapse
Affiliation(s)
- SoJin Shin
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - HakSeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| |
Collapse
|
2
|
Cao X, Deng T, Zhu Q, Wang J, Shi W, Liu Q, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Photothermal Therapy Mediated Hybrid Membrane Derived Nano-formulation for Enhanced Cancer Therapy. AAPS PharmSciTech 2023; 24:146. [PMID: 37380936 DOI: 10.1208/s12249-023-02594-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Emodin is applied as an antitumor drug in many tumor therapies. However, its pharmacology performances are limited due to its low solubility. Herein, we fused erythrocyte and macrophage to form a hybrid membrane (EMHM) and encapsulated emodin to form hybrid membrane-coated nanoparticles. We employed glycyrrhizin to increase the solubility of emodin first and prepared the hybrid membrane nanoparticle-coated emodin and glycyrrhizin (EG@EMHM NPs) which exhibited an average particle size of 170 ± 20 nm and encapsulation efficiency of 98.13 ± 0.67%. The half-inhibitory concentrations (IC50) of EG@EMHM NPs were 1.166 μg/mL, which is half of the free emodin. Based on the photosensitivity of emodin, the reactive oxygen species (ROS) results disclosed that ROS levels of the photodynamic therapy (PDT) section were higher than the normal section (P < 0.05). Compared to the normal section, PDT-mediated EG@EMHM NPs could induce an early stage of apoptosis of B16. The western blot and flow cytometry results verified that PDT-mediated EG@EMHM NPs can significantly improve the solubility of emodin and perform a remarkably antitumor effect on melanoma via BAX and BCL-2 pathway. The application of the combined chemical and PDT therapy could provide an improving target therapy for cutaneous melanoma and also may offer an idea for other insoluble components sources of traditional Chinese medicine. Schematic of EG@EMHM NPs formulation.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qin Zhu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qintong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Li J, Yan X, Li B, Huang L, Wang X, He B, Xie H, Wu Q, Chen L. Identification and validation of ferroptosis-related genes in patients infected with dengue virus: implication in the pathogenesis of DENV. Virus Genes 2023; 59:377-390. [PMID: 36973608 PMCID: PMC10042429 DOI: 10.1007/s11262-023-01985-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, has been associated with many virus infections. However, the role of ferroptosis in dengue virus (DENV) infection remains to be clarified. In our study, a dengue fever microarray dataset (GSE51808) of whole blood samples was downloaded from the Gene Expression Omnibus (GEO), and a list of ferroptosis related genes (FRGs) was extracted from the FerrDb. We identified 37 ferroptosis-related differentially expressed genes (FR-DEGs) in DENV-infected patient blood samples compared to healthy individuals. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses as well as protein-protein interaction (PPI) network of FR-DEGs revealed that these 37 FR-DEGs were mainly related to the C-type lectin receptor and p53 signaling pathway. Nine out of the 37 FR-DEGs (HSPA5, CAV1, HRAS, PTGS2, JUN, IL6, ATF3, XBP1, and CDKN2A) were hub genes, of which 5 were validated by qRT-PCR in DENV-infected HepG2 cells. Finally, using miRNA-mRNA regulatory network, we identified has-miR-124-3p and has-miR-16-5p as the most critical miRNAs in regulating the expression of these hub genes. In conclusion, our findings demonstrated that 5 FR-DEGs, JUN, IL6, ATF3, XBP1, and CDKN2A, and two miRNAs, has-miR-124-3p and has-miR-16-5p may implicate an essential role of ferroptosis in DENV infection, and further studies are warranted to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Jinlian Li
- The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, China
| | - Xipeng Yan
- The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, China
| | - Bin Li
- The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, China
| | - Linbing Huang
- The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, China
| | - Xinwei Wang
- The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, China
| | - Baoren He
- The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, China
| | - He Xie
- The Hospital of Xidian Group, Xi'an, China
| | - Qunying Wu
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China.
| | - Limin Chen
- The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, China.
- The Hospital of Xidian Group, Xi'an, China.
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.
| |
Collapse
|
4
|
Rautaniemi K, John T, Richter M, Huck BC, Zini J, Loretz B, Lehr CM, Vuorimaa-Laukkanen E, Lisitsyna E, Laaksonen T. Intracellular Dynamics of Extracellular Vesicles by Segmented Trajectory Analysis. Anal Chem 2022; 94:17770-17778. [PMID: 36512439 PMCID: PMC9798377 DOI: 10.1021/acs.analchem.2c02928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The analysis of nanoparticle (NP) dynamics in live cell studies by video tracking provides detailed information on their interactions and trafficking in the cells. Although the video analysis is not yet routinely used in NP studies, the equipment suitable for the experiments is already available in most laboratories. Here, we compare trajectory patterns, diffusion coefficients, and particle velocities of NPs in A549 cells with a rather simple experimental setup consisting of a fluorescence microscope and openly available trajectory analysis software. The studied NPs include commercial fluorescent polymeric particles and two subpopulations of PC-3 cell-derived extracellular vesicles (EVs). As bioderived natural nanoparticles, the fluorescence intensities of the EVs limited the recording speed. Therefore, we studied the effect of the recording frame rate and analysis parameters to the trajectory results with bright fluorescent commercial NPs. We show that the trajectory classification and the apparent particle velocities are affected by the recording frame rate, while the diffusion constants stay comparable. The NP trajectory patterns were similar for all NP types and resembled intracellular vesicular transport. Interestingly, the EV movements were faster than the commercial NPs, which contrasts with their physical sizes and may indicate a greater role of the motor proteins in their intracellular transports.
Collapse
Affiliation(s)
- Kaisa Rautaniemi
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720Tampere, Finland,
| | - Thomas John
- Experimental
Physics, Saarland University, 66123Saarbrücken, Germany
| | - Maximilian Richter
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8 1, 66123Saarbrücken, Germany,Department
of Pharmacy, Saarland University, 66123Saarbrücken, Germany
| | - Benedikt C. Huck
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8 1, 66123Saarbrücken, Germany,Department
of Pharmacy, Saarland University, 66123Saarbrücken, Germany
| | - Jacopo Zini
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5, 00790Helsinki, Finland
| | - Brigitta Loretz
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8 1, 66123Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8 1, 66123Saarbrücken, Germany,Department
of Pharmacy, Saarland University, 66123Saarbrücken, Germany
| | - Elina Vuorimaa-Laukkanen
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720Tampere, Finland
| | - Ekaterina Lisitsyna
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720Tampere, Finland
| | - Timo Laaksonen
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720Tampere, Finland,Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5, 00790Helsinki, Finland
| |
Collapse
|
5
|
Abstract
The effect of the on-going COVID-19 pandemic on global healthcare systems has underlined the importance of timely and cost-effective point-of-care diagnosis of viruses. The need for ultrasensitive easy-to-use platforms has culminated in an increased interest for rapid response equipment-free alternatives to conventional diagnostic methods such as polymerase chain reaction, western-blot assay, etc. Furthermore, the poor stability and the bleaching behavior of several contemporary fluorescent reporters is a major obstacle in understanding the mechanism of viral infection thus retarding drug screening and development. Owing to their extraordinary surface-to-volume ratio as well as their quantum confinement and charge transfer properties, nanomaterials are desirable additives to sensing and imaging systems to amplify their signal response as well as temporal resolution. Their large surface area promotes biomolecular integration as well as efficacious signal transduction. Due to their hole mobility, photostability, resistance to photobleaching, and intense brightness, nanomaterials have a considerable edge over organic dyes for single virus tracking. This paper reviews the state-of-the-art of combining carbon-allotrope, inorganic and organic-based nanomaterials with virus sensing and tracking methods, starting with the impact of human pathogenic viruses on the society. We address how different nanomaterials can be used in various virus sensing platforms (e.g. lab-on-a-chip, paper, and smartphone-based point-of-care systems) as well as in virus tracking applications. We discuss the enormous potential for the use of nanomaterials as simple, versatile, and affordable tools for detecting and tracing viruses infectious to humans, animals, plants as well as bacteria. We present latest examples in this direction by emphasizing major advantages and limitations.
Collapse
Affiliation(s)
- Muqsit Pirzada
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| | - Zeynep Altintas
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| |
Collapse
|
6
|
Pilkington CP, Seddon JM, Elani Y. Microfluidic technologies for the synthesis and manipulation of biomimetic membranous nano-assemblies. Phys Chem Chem Phys 2021; 23:3693-3706. [PMID: 33533338 DOI: 10.1039/d0cp06226j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microfluidics has been proposed as an attractive alternative to conventional bulk methods used in the generation of self-assembled biomimetic structures, particularly where there is a desire for more scalable production. The approach also allows for greater control over the self-assembly process, and parameters such as particle architecture, size, and composition can be finely tuned. Microfluidic techniques used in the generation of microscale assemblies (giant vesicles and higher-order multi-compartment assemblies) are fairly well established. These tend to rely on microdroplet templation, and the resulting structures have found use as comparmentalised motifs in artificial cells. Challenges in generating sub-micron droplets have meant that reconfiguring this approach to form nano-scale structures is not straightforward. This is beginning to change however, and recent technological advances have instigated the manufacture and manipulation of an increasingly diverse repertoire of biomimetic nano-assemblies, including liposomes, polymersomes, hybrid particles, multi-lamellar structures, cubosomes, hexosomes, nanodiscs, and virus-like particles. The following review will discuss these higher-order self-assembled nanostructures, including their biochemical and industrial applications, and techniques used in their production and analysis. We suggest ways in which existing technologies could be repurposed for the enhanced design, manufacture, and exploitation of these structures and discuss potential challenges and future research directions. By compiling recent advances in this area, it is hoped we will inspire future efforts toward establishing scalable microfluidic platforms for the generation of biomimetic nanoparticles of enhanced architectural and functional complexity.
Collapse
Affiliation(s)
- Colin P Pilkington
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK and Department of Chemical Engineering, Exhibition Road, Imperial College London, London, SW7 2AZ, UK.
| | - John M Seddon
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Exhibition Road, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
A near-infrared azadipyrromethene dye: Photophysical properties under different acidity conditions. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|