1
|
Yuan Y, Nasri M, Manayi A, Zhang J, Wu C, Jeon TJ, Kang L. Sericin coats of silk fibres, a degumming waste or future material? Mater Today Bio 2024; 29:101306. [PMID: 39534681 PMCID: PMC11554926 DOI: 10.1016/j.mtbio.2024.101306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Silk is a fibrous biopolymer with a recorded history in the textile industries for centuries. This fibre is constituted of two different proteins: fibroin and sericin, of which the latter accounting for approximately 20-30 % of the silk mass. Silk sericin (SSER) was previously considered as a waste by-product in silk fibroin extraction. SSER has recently garnered significant scientific interest due to its extensive biological and pharmacological properties. These include antioxidant effects, biocompatibility, low immunogenicity, controlled biodegradability, and the ability to induce cell proliferation. This review covers studies about various aspects of this emerging material, namely, its general morphology, specific structure, molecular weight, features of different layers, and gene sequences. The impact of different extraction methods and the application of extracted SSER based on molecular weight are discussed. Additionally, the characteristic functional groups in the amino acids of sericin facilitate its applications in regenerative medicine, wound healing, drug delivery, textile, environment, and energy, in various forms like hydrogels, films, scaffolds, and conduits. SSER-based materials offer great potentials for multi-functional applications in the upcoming decades, showcasing adaptability for various functional uses and promising future technological advancements.
Collapse
Affiliation(s)
- Yunong Yuan
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, New South Wales 2006, Australia
- Sydney Nano Institute, University of Sydney, NSW, 2006, Australia
| | - Mohammad Nasri
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, New South Wales 2006, Australia
| | - Azadeh Manayi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, New South Wales 2006, Australia
- Medicinal Plants Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Junying Zhang
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, New South Wales 2006, Australia
- Sydney Nano Institute, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Jian JC, Chang YC, Chang SP, Chang SJ. Biotemplate-Assisted Growth of ZnO in Gas Sensors for ppb-Level NO 2 Detection. ACS OMEGA 2024; 9:1077-1083. [PMID: 38222652 PMCID: PMC10785271 DOI: 10.1021/acsomega.3c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024]
Abstract
With the growing concern over the adverse effects of environmental pollution on human health, the combination of environmentally friendly and nontoxic biomaterials with metal oxide semiconductor materials for electronic devices has emerged as a prominent trend in current research. In this study, we utilized 150 mg apple biotemplates to assist in the hydrothermal synthesis of ZnO nanospheres. It successfully achieved high sensitivity for detecting 35 and 350 ppb NO2 at room temperature, with responses of 13.74 and 132.44%, respectively. Simultaneously, the 5-cycle repeatability and multiple-gas selectivity exhibited significant improvements. The ZnO nanospheres demonstrated enhanced sensing performance compared to pure ZnO nanorods, which is attributed to the following mechanisms: reason I, the modified surface morphology increasing the surface-to-volume ratio; reason II, an increase in oxygen vacancies, leading to reduced crystallinity and a higher electron concentration; reason III, incorporation of carbon elements on the nanostructure surface to increase active sites. The novel gas sensor assisted by the apple pectin biotemplate offers a promising solution for NO2 gas detection, featuring low operating temperatures, low concentrations, and high response sensitivity.
Collapse
Affiliation(s)
- Jia-Cheng Jian
- Institute
of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (R.O.C.)
| | - Yu-Chi Chang
- Department
of Engineering Science, National Cheng Kung
University, Tainan
City 701, Taiwan (R.O.C.)
| | - Sheng-Po Chang
- Department
of Microelectronics Engineering, National
Kaohsiung University of Science and Technology, Kaohsiung City 807, Taiwan (R.O.C.)
| | - Shoou-Jinn Chang
- Institute
of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (R.O.C.)
| |
Collapse
|