1
|
Zhao L, Yan R, Mao B, Paul R, Duan W, Dai L, Hu C. Advanced Nanocarbons Toward two-Electron Oxygen Electrode Reactions for H 2O 2 Production and Integrated Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403029. [PMID: 38966884 DOI: 10.1002/smll.202403029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Hydrogen peroxide (H2O2) plays a pivotal role in advancing sustainable technologies due to its eco-friendly oxidizing capability. The electrochemical two-electron (2e-) oxygen reduction reaction and water oxidation reaction present an environmentally green method for H2O2 production. Over the past three years, significant progress is made in the field of carbon-based metal-free electrochemical catalysts (C-MFECs) for low-cost and efficient production of H2O2 (H2O2EP). This article offers a focused and comprehensive review of designing C-MFECs for H2O2EP, exploring the construction of dual-doping configurations, heteroatom-defect coupling sites, and strategic dopant positioning to enhance H2O2EP efficiency; innovative structural tuning that improves interfacial reactant concentration and promote the timely release of H2O2; modulation of electrolyte and electrode interfaces to support the 2e- pathways; and the application of C-MFECs in reactors and integrated energy systems. Finally, the current challenges and future directions in this burgeoning field are discussed.
Collapse
Affiliation(s)
- Linjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Riqing Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rajib Paul
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Wenjie Duan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Lee Y, Lee C, Back S, Sa YJ. Electronic structure modification of metal phthalocyanines by a carbon nanotube support for efficient oxygen reduction to hydrogen peroxide. NANOSCALE 2024. [PMID: 38660774 DOI: 10.1039/d4nr00250d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
An active and selective two-electron oxygen reduction reaction (2e- ORR) is required for efficient electrosynthesis of H2O2. This reaction can be promoted by metal phthalocyanines (MPcs), which serve as model catalysts with well-defined structures. MPc molecules have mostly been evaluated on conductive carbon-based substrates, including glassy carbon (GC) and carbon nanotubes (CNTs), yet their influence on the electrocatalytic properties is not well understood. This study demonstrated that the ORR activity per surface area was improved by up to 4-fold with MPc molecules supported on CNTs (MPc/CNTs, M = Co, Mn, and Fe) compared to MPc loaded directly on GC. Ultraviolet photoelectron spectroscopy and density functional theory calculations revealed that the CNTs modified the electronic structure of the MPc molecules to optimize the *OOH binding energy and boost the heterogeneous electron transfer rates. Detailed kinetic analysis enabled multiple reaction pathways to be decoupled to extract the metal-dependent intrinsic 2e-/4e- ORR activities. Finally, MPc/CNT catalysts were employed in an H2O2 electrosynthesis flow cell, which delivered an industrial-scale current density of -200 mA cm-2 and an H2O2 faradaic efficiency of 88.7 ± 0.6% with the CoPc/CNT catalyst in a neutral electrolyte.
Collapse
Affiliation(s)
- Yesol Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Chaehyeon Lee
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea.
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea.
| | - Young Jin Sa
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
3
|
Shang D, Zheng W, Zhao P, Li Y, Xie L, Zhang J, Zhan S, Hu W. Investigation on the reaction kinetic mechanism of polydopamine-loaded copper as dual-functional catalyst in heterogeneous electro-Fenton process. CHEMOSPHERE 2023; 325:138339. [PMID: 36893871 DOI: 10.1016/j.chemosphere.2023.138339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Heterogeneous electro-Fenton (HEF) process has been regarded as a promising method in environmental remediation. However, the reaction kinetic mechanism of the HEF catalyst for simultaneous production and activation of H2O2 remained confounded. Herein, the copper supported on polydopamine (Cu/C) was synthesized by a facile method and employed as a bifunctional HEFcatalyst, and the catalytic kinetic pathways were deeply investigated by using rotating ring-disk electrode (RRDE) voltammetry based on the Damjanovic model. Experimental results substantiated that a two-electron oxygen reduction reaction (2e- ORR) and a sequential Fenton oxidation reaction were proceeded on 1.0-Cu/C, where metallic copper played a crucial role in the fabrication of 2e- active sites as well as utmost H2O2 activation to produce highly reactive oxygen species (ROS), resulting in the high H2O2 productivity (52.2%) and the almost complete removal of contaminant ciprofloxacin (CIP) after 90 min. The work not only expanded the idea of reaction mechanism on Cu-based catalyst in HEF process but also provided a promising catalyst for pollutants degradation in wastewater treatment.
Collapse
Affiliation(s)
- Denghui Shang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenwen Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Peng Zhao
- China National Offshore Oil Corporation, Tianjin Branch, Tianjin, 300452, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China.
| | - Liangbo Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jinlong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
4
|
Lian Q, Zheng X, Peng G, Liu Z, Chen L, Wu S. Oxidase mimicking of CuMnO2 nanoflowers and the application in colorimetric detection of ascorbic acid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Lin Y, Wang F, Yu J, Zhang X, Lu GP. Iron single-atom anchored N-doped carbon as a 'laccase-like' nanozyme for the degradation and detection of phenolic pollutants and adrenaline. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127763. [PMID: 34801307 DOI: 10.1016/j.jhazmat.2021.127763] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 05/09/2023]
Abstract
To solve the inherent defects of laccase, the first iron single-atom anchored N-doped carbon material (Fe1@CN-20) as a laccase mimic was disclosed. The FeN4 structure of this material can well mimic the catalytic activity of laccase. Although Fe1@CN-20 has a lower metal content (2.9 wt%) than any previously reported laccase mimics, it exhibits kinetic constants comparable to those of laccase, as its Km (Michaelis constant) and Vmax (maximum rate) are 0.070 mM and 2.25 µM/min respectively, which are similar to those of laccase (0.078 mM, 2.49 µM/min). This catalyst displays excellent stability even under extreme pH (2-9), high temperature (100 °C), strong ionic strength (500 mM of NaCl), high ethanol concentration (volume ratio 40%) and long storage time (2 months). Additionally, it can be reused for at least 7 times with only a slight loss in activity. Therefore, this material has a much lower price and better stability and recyclability than laccase, which has been applied in the detection and degradation of a series of phenolic compounds. In the detection of adrenaline, Fe1@CN-20 achieved a detection limit of 1.3 µM, indicating it is more sensitive than laccase (3.9 µM).
Collapse
Affiliation(s)
- Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Fei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jie Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| |
Collapse
|
6
|
Zhang Y, Chen Z, Tian J, Sun M, Yuan D, Zhang L. Nitrogen doped CuCo 2O 4 nanoparticles anchored on beaded-like carbon nanofibers as an efficient bifunctional oxygen catalyst toward zinc-air battery. J Colloid Interface Sci 2021; 608:1105-1115. [PMID: 34739986 DOI: 10.1016/j.jcis.2021.10.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 12/26/2022]
Abstract
The elaborative design and construction of first-rank bifunctional oxygen electrocatalysts featuring low price, high activity and strong stability is critical for the large-scale applications of rechargeable Zn-air batteries. Here, a resultful strategy is proposed for fabricating nitrogen-doped 1D beaded-like structure carbon nanofibers uniformly decorated with nitrogen-doped CuCo2O4 nanoparticles (N-CuCo2O4@CNFs) toward boosting oxygen evolution reaction/oxygen reduction reaction (OER/ORR) catalysis. Taking advantage of the synergistic effect between interconnected 1D hierarchical porous carbon nanofiber structure and high catalytic activity of N-doped CuCo2O4 nanoparticles derived from bimetallic MOFs, the N-CuCo2O4@CNFs catalysts possess enhanced reaction kinetics and preferable charge transfer ability. Impressively, the obtained catalysts exhibit prominent electrocatalytic ability and superior stability for OER/ORR, even surpass the commercial RuO2 and Pt/C. More significantly, the Zn-air batteries employing the N-CuCo2O4@CNFs-800 as cathode display a higher power density of 175.6 mW cm-2, a lower charge-discharge voltage gap of 0.82 V at 10 mA cm-2, as well as a better cycling stability with respect to those of Pt/C + RuO2 mixture, demonstrating the great potential of N-CuCo2O4@CNF as a high-efficiency catalyst for clean energy devices.
Collapse
Affiliation(s)
- Yifei Zhang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Zihao Chen
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jin Tian
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Mengxiao Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ding Yuan
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China; College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
| | - Lixue Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
| |
Collapse
|
7
|
Xu X, Yin X, Fu J, Ke D. Structural Modulation on NiCo 2 S 4 Nanoarray by N Doping to Enhance 2e-ORR Selectivity for Photothermal AOPs and Zn-O 2 Batteries*. Chemistry 2021; 27:14451-14460. [PMID: 34346117 DOI: 10.1002/chem.202101786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/13/2022]
Abstract
As a H2 O2 generator, a 2e- oxygen reduction reaction active electrocatalyst plays an important role in the advanced oxidation process to degrade organic pollutants in sewage. To enhance the tendency of NiCo2 S4 towards the 2e- reduction reaction, N atoms are doped in its structure and replace S2- . The result implies that this weakens the interaction between NiCo2 S4 and OOH*, suppresses O-O bond breaking and enhances H2 O2 selectivity. This electrocatalyst also shows photothermal effect. Under photothermal heating, H2 O2 produced by the oxidation reduction reaction can decompose and releaseOH, which degrades organic pollutants through the advanced oxidation process. Photothermal effect induced by the advance oxidation process shows obvious advantages over the traditional Fenton reaction, such as wide pH adaptation scope and low secondary pollutant due to its Fe2+ free character. With Zn as anode and the electrocatalyst as cathode material, a Zn-O2 battery is assembled. It achieves electricity generation and photothermal effect induced by the advance oxidation process simultaneously.
Collapse
Affiliation(s)
- Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China.,Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University, Shenyang, Liaoning, 110819, China)
| | - Xunkai Yin
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| | - Jingnuo Fu
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| | - Di Ke
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| |
Collapse
|
8
|
Chen Z, Mo Y, Lin D, Tuo Y, Feng X, Liu Y, Chen X, Chen D, Yang C. Engineering the efficient three-dimension hollow cubic carbon from vacuum residuum with enhanced mass transfer ability towards H2O2 production. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Zhang Y, Melchionna M, Medved M, Błoński P, Steklý T, Bakandritsos A, Kment Š, Zbořil R, Otyepka M, Fornaserio P, Naldoni A. Enhanced On‐Site Hydrogen Peroxide Electrosynthesis by a Selectively Carboxylated N‐Doped Graphene Catalyst. ChemCatChem 2021. [DOI: 10.1002/cctc.202100805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yu Zhang
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, INSTM University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Miroslav Medved
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
| | - Piotr Błoński
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
| | - Tomáš Steklý
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
| | - Aristides Bakandritsos
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- Nanotechnology Centre CEET VŠB – Technical University Ostrava 17 listopadu 2172/15 Ostrava-Poruba 70800 Czech Republic
| | - Štěpán Kment
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- Nanotechnology Centre CEET VŠB – Technical University Ostrava 17 listopadu 2172/15 Ostrava-Poruba 70800 Czech Republic
| | - Radek Zbořil
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- Nanotechnology Centre CEET VŠB – Technical University Ostrava 17 listopadu 2172/15 Ostrava-Poruba 70800 Czech Republic
| | - Michal Otyepka
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- IT4Innovations, VSB – Technical University of Ostrava 17. listopadu 2172/15 70800 Ostrava-Poruba Czech Republic
| | - Paolo Fornaserio
- Department of Chemical and Pharmaceutical Sciences, INSTM University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Alberto Naldoni
- Czech Advanced Technology and Research Institute Regional Centre of Advanced Technologies and Materials Palacky University Slechtitelu 27 77900 Olomouc Czech Republic
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 P. R. China
| |
Collapse
|
10
|
Xu Z, Liang J, Wang Y, Dong K, Shi X, Liu Q, Luo Y, Li T, Jia Y, Asiri AM, Feng Z, Wang Y, Ma D, Sun X. Enhanced Electrochemical H 2O 2 Production via Two-Electron Oxygen Reduction Enabled by Surface-Derived Amorphous Oxygen-Deficient TiO 2-x. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33182-33187. [PMID: 34251177 DOI: 10.1021/acsami.1c09871] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The electrochemical oxygen reduction reaction (ORR) is regarded as an attractive alternative to the anthraquinone process for sustainable and on-site hydrogen peroxide (H2O2) production. It is however hindered by low selectivity due to strong competition from the four-electron ORR and needs efficient catalysts to drive the 2e- ORR. Here, an acid oxidation strategy is proposed as an effective strategy to boost the 2e- ORR activity of metallic TiC via in-site generation of a surface amorphous oxygen-deficient TiO2-x layer. The resulting a-TiO2-x/TiC exhibits a low overpotential and high H2O2 selectivity (94.1% at 0.5 V vs reversible hydrogen electrode (RHE)), and it also demonstrates robust stability with a remarkable productivity of 7.19 mol gcat.-1 h-1 at 0.30 V vs RHE. The electrocatalytic mechanism of a-TiO2-x/TiC is further revealed by density functional theory calculations.
Collapse
Affiliation(s)
- Zhaoquan Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yuanyuan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineeing, Henan University, Kaifeng 475004, Henan, China
| | - Kai Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Xifeng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yonglan Luo
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineeing, Henan University, Kaifeng 475004, Henan, China
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Zhesheng Feng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yan Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineeing, Henan University, Kaifeng 475004, Henan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| |
Collapse
|
11
|
Xiao H, Li B, Zhao M, Li Y, Hu T, Jia J, Wu H. Electrosynthesized CuO x/graphene by a four-electrode electrolysis system for the oxygen reduction reaction to hydrogen peroxide. Chem Commun (Camb) 2021; 57:4118-4121. [PMID: 33908453 DOI: 10.1039/d1cc00386k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here a facile four-electrode electrolysis system is firstly applied to synthesize a CuOx/graphene hybrid. The exfoliation of graphite via high electrolytic voltage and dissolution of copper via low electrolytic voltage are achieved simultaneously. CuOx/G with the highest content of CuOx shows superior electrocatalytic activity for oxygen reduction to hydrogen peroxide.
Collapse
Affiliation(s)
- He Xiao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Linfen, 041004, China.
| | - Bo Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Linfen, 041004, China.
| | - Man Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Linfen, 041004, China.
| | - Ya Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Linfen, 041004, China.
| | - Tianjun Hu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Linfen, 041004, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Linfen, 041004, China.
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Linfen, 041004, China.
| |
Collapse
|
12
|
Zhao H, Yuan ZY. Design Strategies of Non-Noble Metal-Based Electrocatalysts for Two-Electron Oxygen Reduction to Hydrogen Peroxide. CHEMSUSCHEM 2021; 14:1616-1633. [PMID: 33587818 DOI: 10.1002/cssc.202100055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Indexed: 05/25/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a highly value-added and environmentally friendly chemical with various applications. The production of H2 O2 by electrocatalytic 2e- oxygen reduction reaction (ORR) has drawn considerable research attention, with a view to replacing the currently established anthraquinone process. Electrocatalysts with low cost, high activity, high selectivity, and superior stability are in high demand to realize precise control over electrochemical H2 O2 synthesis by 2e- ORR and the feasible commercialization of this system. This Review introduces a comprehensive overview of non-noble metal-based catalysts for electrochemical oxygen reduction to afford H2 O2 , providing an insight into catalyst design and corresponding reaction mechanisms. It starts with an in-depth discussion on the origins of 2e- /4e- selectivity towards ORR for catalysts. Recent advances in design strategies for non-noble metal-based catalysts, including carbon nanomaterials and transition metal-based materials, for electrochemical oxygen reduction to H2 O2 are then discussed, with an emphasis on the effects of electronic structure, nanostructure, and surface properties on catalytic performance. Finally, future challenges and opportunities are proposed for the further development of H2 O2 electrogeneration through 2e- ORR, from the standpoints of mechanistic studies and practical application.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong, 252000, P. R. China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
13
|
He F, Xia N, Zheng Y, Zhang Y, Fan H, Ma D, Liu Q, Hu X. In Situ Electrochemical Fabrication of Ultrasmall Ru-Based Nanoparticles for Robust N 2H 4 Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8488-8496. [PMID: 33576236 DOI: 10.1021/acsami.0c22700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasmall Ru nanoparticles is expected as a potential alternative to Pt for efficient hydrazine oxidation (HzOR). However, preparation of ultrasmall and well-distributed Ru nanoparticles usually suffered from the steps of modification of supports, coordination, reduction with strong reducing reagents (e.g., NaBH4) or pyrolysis, imposing the complexity. Based on the self-reducibility of C-OH group and physical adsorption ability of commercial Ketjen black (KB), we developed an efficient, stable and robust Ru-based electrocatalyst (A-Ru-KB) by coupling impregnation of KB in RuCl3 solution and simple in situ electrochemical activation strategy, which endowed the formation of ultrasmall and well-distributed Ru nanoparticles. Benefiting from an enhanced exposure of Ru sites and the faster mass transport, A-Ru-KB achieved 63.4 and 3.9-fold enhancements of mass activity compared with Pt/C and Ru/C, respectively, accompanied by a ∼144 mV lower onset potential and faster catalytic kinetics than Pt/C. In the hydrazine fuel cell, the open-circuit voltage and maximal mass power density of A-Ru-KB was 130 mV and ∼3.8-fold higher than those of Pt/C, respectively, together with the long-term stability. This work would provide a facile and sustainable approach for large-scale production of other robust metal (electro)catalysts with ultrasmall nanosize for various energy conversion and electrochemical organic synthesis.
Collapse
Affiliation(s)
- Fei He
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Nannan Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yan Zheng
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Yixin Zhang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Huailin Fan
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Delong Ma
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Qianhe Liu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
14
|
Perazzolo V, Daniel G, Brandiele R, Picelli L, Rizzi GA, Isse AA, Durante C. PEO‐b‐PS Block Copolymer Templated Mesoporous Carbons: A Comparative Study of Nitrogen and Sulfur Doping in the Oxygen Reduction Reaction to Hydrogen Peroxide. Chemistry 2020; 27:1002-1014. [DOI: 10.1002/chem.202003355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Valentina Perazzolo
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Giorgia Daniel
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Riccardo Brandiele
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Luca Picelli
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Gian Andrea Rizzi
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Christian Durante
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| |
Collapse
|