1
|
Liu D, Wen Y, Xie Z, Zhang M, Wang Y, Feng Q, Cheng Z, Lu Z, Mao Y, Yang H. Self-Powered, Flexible, Wireless and Intelligent Human Health Management System Based on Natural Recyclable Materials. ACS Sens 2024; 9:6236-6246. [PMID: 39436357 DOI: 10.1021/acssensors.4c02186] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Combining wearable sensors with modern technologies such as internet of things and big data to monitor or intervene in obesity-induced chronic diseases, such as obstructive sleep apnea, type II diabetes, cardiovascular diseases, and Alzheimer's disease, is of great significance to the self-health management of human beings. This study designed a loofah-conducting graphite four friction layer enhanced triboelectric nanogenerator (LG-TENG) and developed a health management system for human motion recognition and early warning of sleep breathing abnormalities. By uniformly spraying and depositing conductive graphite on the surface of the loofah and the elastic film cross-interlocking bending structure design, the signal strength of the LG-TENG has been improved by 390%. The stable output signal is still maintained after 1500 s of continuous operation at a frequency of 2 Hz. LG-TENG can realize accurate motion analysis by muscle contraction state. Combining different deep learning models resulted in 98.1% accuracy in recognizing seven categories of displacement speeds for an individual and 96.46% accuracy in recognizing seven categories of displacement speeds for three individuals. In addition, the sleep breathing monitoring early warning system was developed by integrating Bluetooth wireless transmission and upper computer analysis technology. This system aims to analyze and provide real-time warnings for sleep-breathing abnormalities. This research promotes an innovation of TENG technology based on the advantages of natural materials, recyclability and low cost. It offers new ideas for self-health management and scientific exercise for obese people, showing a broad application prospect.
Collapse
Affiliation(s)
- Dongsheng Liu
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Yuzhang Wen
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Zhenning Xie
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Mengqi Zhang
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Yunlu Wang
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Qingyang Feng
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Zihang Cheng
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Zhuo Lu
- School of Physical Education, Northeast Normal University, Changchun 130024, China
| | - Yupeng Mao
- Physical Education Department, Northeastern University, Shenyang 110819, China
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| | - Haidong Yang
- Physical Education Department, Northeastern University, Shenyang 110819, China
| |
Collapse
|
2
|
Liu Q, Xue Y, He J, Li J, Mu L, Zhao Y, Liu H, Sun CL, Qu M. Highly Moisture-Resistant Flexible Thin-Film-Based Triboelectric Nanogenerator for Environmental Energy Harvesting and Self-Powered Tactile Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38269-38282. [PMID: 38986605 DOI: 10.1021/acsami.4c08188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Triboelectric nanogenerator (TENG) has been demonstrated as a sustainable energy utilization method for waste mechanical energy and self-powered system. However, the charge dissipation of frictional layer materials in a humid environment severely limits their stable energy supply. In this work, a new method is reported for preparing polymer film as a hydrophobic negative friction material by solution blending poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and polyvinyl chloride (PVC), doping with titanium dioxide (TiO2) nanoparticles, and further surface patterning modification. The P-TENG composed of the PVDF-HFP/PVC/TiO2 composite film with optimized hydrophobic performance (WCA = 124°) achieved an output voltage of 235 V and a short-circuit current of 35 μA, which is approximately three times that of the bare PVDF-HFP-based TENG. Under charge excitation, the transferred charge of the P-TENG can reach 35 nC. When the external load resistance is 5.5 MΩ, the output peak power density can reach 1.4 W m-2. Meanwhile, the hydrophobic surface layer with a rough surface structure enables the device to overcome the influence of water molecules on charge transfer in a humid environment, quickly recover, and maintain a high output. The P-TENG can effectively monitor finger flexibility and strength and realize real-time evaluation of the exercise state and hand fatigue of the elderly and rehabilitation trainers. It has broad application prospects in self-powered intelligent motion sensing, soft robotics, human-machine interaction, and other fields.
Collapse
Affiliation(s)
- Qinghua Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
- College of Energy, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yuyu Xue
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jinmei He
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiehui Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
- College of Energy, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Leihuan Mu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
- College of Energy, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yue Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Cai-Li Sun
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Mengnan Qu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
3
|
Wu L, Xue P, Fang S, Gao M, Yan X, Jiang H, Liu Y, Wang H, Liu H, Cheng B. Boosting the output performance of triboelectric nanogenerators via surface engineering and structure designing. MATERIALS HORIZONS 2024; 11:341-362. [PMID: 37901942 DOI: 10.1039/d3mh00614j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Triboelectric nanogenerators (TENGs) have been utilized in a wide range of applications, including smart wearable devices, self-powered sensors, energy harvesting, and high-voltage power sources. The surface morphology and structure of TENGs play a critical role in their output performance. In this review, we analyze the working mechanism of TENGs with the aim to improve their output performance and systematically summarize the morphological engineering and structural design strategies for TENGs. Additionally, we present the emerging applications of TENGs with specific structures and surfaces. Finally, we discuss the potential future development and industrial application of TENGs. By deeply exploring the surface and structural design strategy of high-performance TENGs, it is conducive to further promote the application of TENGs in actual production. We hope that this review provides insights and guidance for the morphological and structural design of TENGs in the future.
Collapse
Affiliation(s)
- Lingang Wu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shangdong 252000, P. R. China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Shize Fang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Meng Gao
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaojie Yan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hong Jiang
- Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co, Jiangxi 335500, P. R. China
| | - Yang Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Huihui Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
4
|
Chen J, Tang N, Cheng L, Zheng Y. Toward Large-Scale Energy Harvesting by a UV-Curable Organic-Coating-Based Triboelectric Nanogenerator. SENSORS (BASEL, SWITZERLAND) 2023; 23:579. [PMID: 36679373 PMCID: PMC9866600 DOI: 10.3390/s23020579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Triboelectric nanogenerators (TENGs) stand out as an attractive form of technology for the efficient harvest of mechanical energy and the powering of wearable devices due to their light weight, simplicity, high power density, and efficient vibration energy scavenging capabilities. However, the requirement for micro/nanostructures and/or complex and expensive instruments hinders their cheap mass production, thus limiting their practical applications. By using a simple, cost-effective, fast spray-coating process, we develop high-performance UV-curable triboelectric coatings for large-scale energy harvesting. The effect of different formulations and coating compositions on the triboelectric output is investigated to design triboelectric coatings with high output performance. The TENG based on a hybrid coating exhibits high output performance of 54.5 μA current, 1228.9 V voltage, 163.6 nC transferred charge and 3.51 mW output power. Moreover, the hybrid coatings show good long-term output stability. All the results indicate that the designed triboelectric coatings show great potential for large-scale energy harvesting with the advantages of cost-effectiveness, fast fabrication, easy mass production and long-term stability.
Collapse
Affiliation(s)
- Jian Chen
- Yangjiang Nuclear Power Company Ltd., Yangjiang 529941, China
| | - Ning Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Cheng
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Ma Z, Liu J, Zhang X, Deng R, Lu S, Wu Y, Qin L, Dong G. Flexible surfaces prepared through direct ink writing with drag reduction and antifouling. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Yan Q, Li S, Tao X, Wang T, Xu X, Wang X, Li H, Chen X, Bian Z. Self-Cleaning and Shape-Adaptive Triboelectric Nanogenerator-Contained TiO 2 Nanoparticle Coating. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49755-49764. [PMID: 36301113 DOI: 10.1021/acsami.2c14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the rapid development of triboelectric nanogenerators (TENGs) for flexible wearable devices and electronic skins, challenges have gradually emerged related to the electrification surface, such as pollutant contamination and sophisticated surface adaptability. Hence, we report a simple spraying method to produce a shape-adaptive photocatalytic (SAP) triboelectric material with both self-cleaning and shape-adaptive functions. By spraying the polyvinyl alcohol solution with TiO2 photocatalysts and pre-drying cyclic, the SAP film can be adapted to a varied and intricate substrate. The highest transferred charge density of the SAP film reaches 197.5 μC/m2, when it contacts with the PTFE film. At the same time, it can degrade 74.4% of simulated pollutants under sunlight illumination, and 97% of the transferred charge density can be maintained after the degradation process, indicating good self-cleaning function and stable electrical output. Moreover, the spraying method of this allows it to have shape-adaptive functions. Accordingly, the SAP film can be deposited on the rectangular pyramid and hemispherical surface for fabricating TENGs with special shapes. This low-cost and simple spraying method further promotes the commercialized application of TENGs in the field of wearable devices and skin sensors.
Collapse
Affiliation(s)
- Qi Yan
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Shuyao Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinglin Tao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Wang
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Xiyan Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Xingling Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hexing Li
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
- Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenfeng Bian
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|
7
|
Xiong J, Wang W, Du H, Zhou Z, Zhao A, Mi L, Chen S. Directed molecular structure design of coordination polymers with different ligands for regulating output performance of triboelectric nanogenerators. RSC Adv 2022; 12:30051-30055. [PMID: 36329932 PMCID: PMC9583627 DOI: 10.1039/d2ra05537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
A triboelectric nanogenerator (TENG) provides an effective method to harvest mechanical energy from the environment. The morphology and structure of frictional electrode materials of this type of device affect the output performance significantly. Metal-organic coordination polymers (CPs) with special structure advantages offer a vast pool of materials enabling high performances. Two Co-CPs based on terephthalic acid and 2,5-dihydroxyterephthalic acid ligands, respectively, were used to fabricate TENGs. Detailed electrical characterizations of the TENG devices revealed that the introduction of the substituent groups in the organic ligands leads to the structural changes of CPs, which ultimately leads to significant differences in the output performance.
Collapse
Affiliation(s)
- Jiabin Xiong
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Wenjie Wang
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Huijun Du
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Ziqing Zhou
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Aiwei Zhao
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Liwei Mi
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Siru Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| |
Collapse
|
8
|
Yun J, Park J, Jeong S, Hong D, Kim D. A Mask-Shaped Respiration Sensor Using Triboelectricity and a Machine Learning Approach toward Smart Sleep Monitoring Systems. Polymers (Basel) 2022; 14:polym14173549. [PMID: 36080623 PMCID: PMC9460850 DOI: 10.3390/polym14173549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Daily sleep monitoring is limited by the needs for specialized equipment and experts. This study combines a mask-shaped triboelectric nanogenerator (M-TENG) and machine learning for facile daily sleep monitoring without the specialized equipment or experts. The fabricated M-TENG demonstrates its excellent ability to detect respiration, even distinguishing oral and nasal breath. To increase the pressure sensitivity of the M-TENG, the reactive ion etching is conducted with different tilted angles. By investigating each surface morphology of the polytetrafluoroethylene films according to the reactive ion etching with different tilted angles, the tilted angle is optimized with the angle of 60° and the pressure sensitivity is increased by 5.8 times. The M-TENG can also detect changes in the angle of head and snoring. Various sleep stages can be classified by their distinctive electrical outputs, with the aid of a machine learning approach. As a result, a high averaged-classification accuracy of 87.17% is achieved for each sleep stage. Experimental results demonstrate that the proposed combination can be utilized to monitor the sleep stage in order to provide an aid for self-awareness of sleep disorders. Considering these results, the M-TENG and machine learning approach is expected to be utilized as a smart sleep monitoring system in near future.
Collapse
Affiliation(s)
- Jonghyeon Yun
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Korea
- Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Korea
| | - Jihyeon Park
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Korea
- Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Korea
| | - Suna Jeong
- Department of Occupational Therapy, College of Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Korea
| | - Deokgi Hong
- Department of Occupational Therapy, College of Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Korea
- Correspondence: (D.H.); (D.K.)
| | - Daewon Kim
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeon-daero, Yongin 17104, Korea
- Correspondence: (D.H.); (D.K.)
| |
Collapse
|
9
|
Han X, Zhang Q, Yu J, Song J, Li Z, Cui H, He J, Chou X, Mu J. Self-Powered Acceleration Sensor Based on Multilayer Suspension Structure and TPU-RTV Film for Vibration Monitoring. NANOMATERIALS 2021; 11:nano11102763. [PMID: 34685200 PMCID: PMC8538356 DOI: 10.3390/nano11102763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
In this paper, we designed a triboelectric acceleration sensor with excellent multiple parameters. To more easily detect weak vibrations, the sensor was founded on a multilayer suspension structure. To effectively improve the electrical properties of the sensor, a surface roughening and internal doping friction film, which was refined with a room temperature vulcanized silicone rubber (RTV) and some thermoplastic polyurethanes (TPU) powder in a certain proportion, was integrated into the structure. It was found that the optimization of the RTV film increases the open circuit voltage and short circuit current of the triboelectric nanogenerator (TENG) by 223% and 227%, respectively. When the external vibration acceleration is less than 4 m/s2, the sensitivity and linearity are 1.996 V/(m/s2) and 0.999, respectively. Additionally, when it is in the range between 4 m/s2 and 15 m/s2, those are 23.082 V/(m/s2) and 0.975, respectively. Furthermore, the sensor was placed in a simulated truck vibration environment, and its self-powered monitoring ability validated by experiments in real time. The results show that the designed sensor has strong practical value in the field of monitoring mechanical vibration acceleration.
Collapse
|