1
|
Kumar A, Choudhari A, Gupta AK, Kumar A. Rare-Earth based magnesium alloys as a potential biomaterial for the future. JOURNAL OF MAGNESIUM AND ALLOYS 2024; 12:3841-3897. [DOI: 10.1016/j.jma.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Leung K, Ilgen AG. Modeling separation of lanthanides via heterogeneous ligand binding. Phys Chem Chem Phys 2024. [PMID: 39018152 DOI: 10.1039/d4cp00880d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Individual lanthanide elements have physical/electronic/magnetic properties that make each useful for specific applications. Several of the lanthanides cations (Ln3+) naturally occur together in the same ores. They are notoriously difficult to separate from each other due to their chemical similarity. Predicting the Ln3+ differential binding energies (ΔΔE) or free energies (ΔΔG) at different binding sites, which are key figures of merit for separation applications, will help design of materials with lanthanide selectivity. We apply ab initio molecular dynamics (AIMD) simulations and density functional theory (DFT) to calculate ΔΔG for Ln3+ coordinated to ligands in water and embedded in metal-organic frameworks (MOFs), and ΔΔE for Ln3+ bonded to functionalized silica surfaces, thus circumventing the need for the computational costly absolute binding (free) energies ΔG and ΔE. Perturbative AIMD simulations of water-inundated simulation cells are applied to examine the selectivity of ligands towards adjacent Ln3+ in the periodic table. Static DFT calculations with a full Ln3+ first coordination shell, while less rigorous, show that all ligands examined with net negative charges are more selective towards the heavier lanthanides than a charge-neutral coordination shell made up of water molecules. Amine groups are predicted to be poor ligands for lanthanide-binding. We also address cooperative ion binding, i.e., using different ligands in concert to enhance lanthanide selectivity.
Collapse
Affiliation(s)
- Kevin Leung
- Geochemistry Department, MS 0750, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
| | - Anastasia G Ilgen
- Geochemistry Department, MS 0750, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
| |
Collapse
|
3
|
Alizadeh Sahraei A, Azizi D, Mokarizadeh AH, Boffito DC, Larachi F. Emerging Trends of Computational Chemistry and Molecular Modeling in Froth Flotation: A Review. ACS ENGINEERING AU 2023; 3:128-164. [PMID: 37362006 PMCID: PMC10288516 DOI: 10.1021/acsengineeringau.2c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/28/2023]
Abstract
Froth flotation is the most versatile process in mineral beneficiation, extensively used to concentrate a wide range of minerals. This process comprises mixtures of more or less liberated minerals, water, air, and various chemical reagents, involving a series of intermingled multiphase physical and chemical phenomena in the aqueous environment. Today's main challenge facing the froth flotation process is to gain atomic-level insights into the properties of its inherent phenomena governing the process performance. While it is often challenging to determine these phenomena via trial-and-error experimentations, molecular modeling approaches not only elicit a deeper understanding of froth flotation but can also assist experimental studies in saving time and budget. Thanks to the rapid development of computer science and advances in high-performance computing (HPC) infrastructures, theoretical/computational chemistry has now matured enough to successfully and gainfully apply to tackle the challenges of complex systems. In mineral processing, however, advanced applications of computational chemistry are increasingly gaining ground and demonstrating merit in addressing these challenges. Accordingly, this contribution aims to encourage mineral scientists, especially those interested in rational reagent design, to become familiarized with the necessary concepts of molecular modeling and to apply similar strategies when studying and tailoring properties at the molecular level. This review also strives to deliver the state-of-the-art integration and application of molecular modeling in froth flotation studies to assist either active researchers in this field to disclose new directions for future research or newcomers to the field to initiate innovative works.
Collapse
Affiliation(s)
- Abolfazl Alizadeh Sahraei
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Dariush Azizi
- Department
of Chemical Engineering, École Polytechnique
de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal H3T 1J4, Canada
| | - Abdol Hadi Mokarizadeh
- School
of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Daria Camilla Boffito
- Department
of Chemical Engineering, École Polytechnique
de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal H3T 1J4, Canada
| | - Faïçal Larachi
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
4
|
Tarzia A, Jelfs KE. Unlocking the computational design of metal-organic cages. Chem Commun (Camb) 2022; 58:3717-3730. [PMID: 35229861 PMCID: PMC8932387 DOI: 10.1039/d2cc00532h] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic cages are macrocyclic structures that can possess an intrinsic void that can hold molecules for encapsulation, adsorption, sensing, and catalysis applications. As metal-organic cages may be comprised from nearly any combination of organic and metal-containing components, cages can form with diverse shapes and sizes, allowing for tuning toward targeted properties. Therefore, their near-infinite design space is almost impossible to explore through experimentation alone and computational design can play a crucial role in exploring new systems. Although high-throughput computational design and screening workflows have long been known as powerful tools in drug and materials discovery, their application in exploring metal-organic cages is more recent. We show examples of structure prediction and host-guest/catalytic property evaluation of metal-organic cages. These examples are facilitated by advances in methods that handle metal-containing systems with improved accuracy and are the beginning of the development of automated cage design workflows. We finally outline a scope for how high-throughput computational methods can assist and drive experimental decisions as the field pushes toward functional and complex metal-organic cages. In particular, we highlight the importance of considering realistic, flexible systems.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
5
|
Yiyen G, Duck KV, Walker RA. Surfactant Adsorption to Gypsum Surfaces and the Effects on Solubility in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2804-2810. [PMID: 35220715 DOI: 10.1021/acs.langmuir.1c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vibrational sum frequency generation (VSFG) spectroscopy, conductometric titration measurements, and EDX elemental mapping were used to examine surfactant adsorption to the gypsum (010) surface and assess the effects of surfactant adsorption on gypsum solubility in aqueous solutions. Sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium chloride (DTAC) were used as anionic and cationic surfactants, respectively. Gypsum/SDS interactions result in an ordered precipitate layer on the gypsum surface after water evaporation; gypsum/DTAC interaction did not show a similar effect, despite exposure of gypsum to equivalent amounts of surfactant. VSFG spectra showed that SDS molecules adsorb with their chains parallel to the gypsum surface; spectra from gypsum surfaces treated with DTAC, however, showed no measurable response, implying that these surfactants form disorganized aggregates with no polar ordering. Vibrational data were supported by independent EDX measurements that show a uniform distribution of SDS across the gypsum surface. In contrast, element-specific EDX images showed that DTAC clustered in tightly localized patches that left most of the gypsum surface exposed. The uniform adsorption of SDS on the gypsum surface suppresses long-term dissolution up to 40% when compared to samples exposed to DTAC. Gypsum samples in DTAC-containing solutions lose approximately the same amount of material to dissolution as samples immersed in pure water.
Collapse
|
6
|
Nayak S, Kumal RR, Liu Z, Qiao B, Clark AE, Uysal A. Origins of Clustering of Metalate-Extractant Complexes in Liquid-Liquid Extraction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24194-24206. [PMID: 33849269 DOI: 10.1021/acsami.0c23158] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Effective and energy-efficient separation of precious and rare metals is very important for a variety of advanced technologies. Liquid-liquid extraction (LLE) is a relatively less energy intensive separation technique, widely used in separation of lanthanides, actinides, and platinum group metals (PGMs). In LLE, the distribution of an ion between an aqueous phase and an organic phase is determined by enthalpic (coordination interactions) and entropic (fluid reorganization) contributions. The molecular scale details of these contributions are not well understood. Preferential extraction of an ion from the aqueous phase is usually correlated with the resulting fluid organization in the organic phase, as the longer-range organization increases with metal loading. However, it is difficult to determine the extent to which organic phase fluid organization causes, or is caused by, metal loading. In this study, we demonstrate that two systems with the same metal loading may impart very different organic phase organizations and investigate the underlying molecular scale mechanism. Small-angle X-ray scattering shows that the structure of a quaternary ammonium extractant solution in toluene is affected differently by the extraction of two metalates (octahedral PtCl62- and square-planar PdCl42-), although both are completely transferred into the organic phase. The aggregates formed by the metalate-extractant complexes (approximated as reverse micelles) exhibit a more long-range order (clustering) with PtCl62- compared to that with PdCl42-. Vibrational sum frequency generation spectroscopy and complementary atomistic molecular dynamics simulations on model Langmuir monolayers indicate that the two metalates affect the interfacial hydration structures differently. Furthermore, the interfacial hydration is correlated with water extraction into the organic phase. These results support a strong relationship between the organic phase organizational structure and the different local hydration present within the aggregates of metalate-extractant complexes, which is independent of metalate concentration.
Collapse
Affiliation(s)
- Srikanth Nayak
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Raju R Kumal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhu Liu
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Baofu Qiao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Aurora E Clark
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
7
|
Falconer RJ, Schuur B, Mittermaier AK. Applications of isothermal titration calorimetry in pure and applied research from 2016 to 2020. J Mol Recognit 2021; 34:e2901. [PMID: 33975380 DOI: 10.1002/jmr.2901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
The last 5 years have seen a series of advances in the application of isothermal titration microcalorimetry (ITC) and interpretation of ITC data. ITC has played an invaluable role in understanding multiprotein complex formation including proteolysis-targeting chimeras (PROTACS), and mitochondrial autophagy receptor Nix interaction with LC3 and GABARAP. It has also helped elucidate complex allosteric communication in protein complexes like trp RNA-binding attenuation protein (TRAP) complex. Advances in kinetics analysis have enabled the calculation of kinetic rate constants from pre-existing ITC data sets. Diverse strategies have also been developed to study enzyme kinetics and enzyme-inhibitor interactions. ITC has also been applied to study small molecule solvent and solute interactions involved in extraction, separation, and purification applications including liquid-liquid separation and extractive distillation. Diverse applications of ITC have been developed from the analysis of protein instability at different temperatures, determination of enzyme kinetics in suspensions of living cells to the adsorption of uremic toxins from aqueous streams.
Collapse
Affiliation(s)
- Robert J Falconer
- School of Chemical Engineering & Advanced Materials, University of Adelaide, Adelaide, South Australia, Australia
| | - Boelo Schuur
- Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | | |
Collapse
|
8
|
Zhang C, Adera S, Aizenberg J, Chen Z. Why Are Water Droplets Highly Mobile on Nanostructured Oil-Impregnated Surfaces? ACS APPLIED MATERIALS & INTERFACES 2021; 13:15901-15909. [PMID: 33754694 DOI: 10.1021/acsami.1c01649] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous lubricated surfaces (aka slippery liquid-infused porous surfaces, SLIPS) have been demonstrated to repel various liquids. The origin of this repellency, however, is not fully understood. By using surface-sensitive sum frequency generation vibrational spectroscopy, we characterized the water/oil interface of a water droplet residing on (a) an oil-impregnated nanostructured surface (SLIPS) and (b) the same oil layer without the underlying nanostructures. Different from water molecules in contact with bulk oil without nanostructures, droplets on SLIPS adopt a molecular orientation that is predominantly parallel to the water/oil interface, leading to weaker hydrogen bonding interactions between water droplets and the lubrication film, giving SLIPS their water repellency. Our results demonstrate that the molecular interactions between two contacting liquids can be manipulated by the implementation of nanostructured substrates. The results also offer the molecular principles for controlling nanostructure to reduce oil depletion-one of the limitations and major concerns of SLIPS.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Solomon Adera
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48103, United States
| |
Collapse
|
9
|
Chapleski RC, Chowdhury AU, Wanhala AK, Bocharova V, Roy S, Keller PC, Everly D, Jansone-Popova S, Kisliuk A, Sacci RL, Stack AG, Anderson CG, Doughty B, Bryantsev VS. A Molecular-Scale Approach to Rare-Earth Beneficiation: Thinking Small to Avoid Large Losses. iScience 2020; 23:101435. [PMID: 32827853 PMCID: PMC7452217 DOI: 10.1016/j.isci.2020.101435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022] Open
Abstract
Separating rare-earth-element-rich minerals from unwanted gangue in mined ores relies on selective binding of collector molecules at the interface to facilitate froth flotation. Salicylhydroxamic acid (SHA) exhibits enhanced selectivity for bastnäsite over calcite in microflotation experiments. Through a multifaceted approach, leveraging density functional theory calculations, and advanced spectroscopic methods, we provide molecular-level mechanistic insight to this selectivity. The hydroxamic acid moiety introduces strong interactions at metal-atom surface sites and hinders subsurface-cation stabilization at vacancy-defect sites, in calcite especially. Resulting from hydrogen-bond-induced interactions, SHA lies flat on the bastnäsite surface and shows a tendency for multilayer formation at high coverages. In this conformation, SHA complexation with bastnäsite metal ions is stabilized, leading to advanced flotation performance. In contrast, SHA lies perpendicular to the calcite surface due to a difference in cationic spacing. We anticipate that these insights will motivate rational design and selection of future collector molecules for enhanced ore beneficiation.
Collapse
Affiliation(s)
- Robert C. Chapleski
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA
| | - Azhad U. Chowdhury
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA
| | - Anna K. Wanhala
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA
| | - Philip C. Keller
- Kroll Institute for Extractive Metallurgy, Colorado School of Mines, Golden, CO 80401, USA
| | - Dylan Everly
- Kroll Institute for Extractive Metallurgy, Colorado School of Mines, Golden, CO 80401, USA
| | - Santa Jansone-Popova
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA
| | - Alexander Kisliuk
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA
| | - Robert L. Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA
| | - Andrew G. Stack
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA
| | - Corby G. Anderson
- Kroll Institute for Extractive Metallurgy, Colorado School of Mines, Golden, CO 80401, USA
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA
| | - Vyacheslav S. Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA
| |
Collapse
|