1
|
González-Lavín J, Arenillas A, Rey-Raap N. Revealing the Importance of Iron Aerogel Features as Electrocatalysts for the Oxygen Reduction Reaction. Gels 2025; 11:154. [PMID: 40136858 PMCID: PMC11942411 DOI: 10.3390/gels11030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Metal nanoparticles supported in carbon materials are the traditional electrocatalyst currently used in many applications. However, these composite materials have many problems associated with the optimization of both components for the specific application, besides the stability of the mixture. Self-supported metallic materials may be an interesting strategy in order to avoid the traditional carbon supports; however, these metallic materials should present highly active surface area. Iron aerogels are presented in this work as effective and affordable unsupported electrocatalysts. The combination of their metallic structure with high porosity (i.e., 85 m2 g-1 and 0.45 cm3 g-1 of mesopore volume), due to their interconnected tridimensional structure, leads to a great activity versus the oxygen reduction reaction. A method for producing iron aerogels based on microwave-assisted sol-gel methodology is presented. The incorporation of carbon functionalities to the iron aerogels seems to clearly influence the mechanism of the reaction, favoring the direct mechanism of the oxygen reduction reaction and thus notably improving the performance of the electrocatalysts. Chemical vapor deposition seems to be an adequate methodology for incorporating carbon functionalities to the transition metal structure without affecting the tridimensional network and leading to current densities over 4 mA cm-2 and great stability even after 10,000 s.
Collapse
Affiliation(s)
| | - Ana Arenillas
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, 33011 Oviedo, Spain;
| | - Natalia Rey-Raap
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, 33011 Oviedo, Spain;
| |
Collapse
|
2
|
Li Q, Fang G, Wu Z, Guo J, You Y, Jin H, Wan J. Advanced Microwave Strategies Facilitate Structural Engineering for Efficient Electrocatalysis. CHEMSUSCHEM 2024; 17:e202301874. [PMID: 38323505 DOI: 10.1002/cssc.202301874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
In the dynamic realm of energy conversion, the demand for efficient electrocatalysis has surged due to the urgent need to seamlessly integrate renewable energy. Traditional electrocatalyst preparation faces challenges like poor controllability, elevated costs, and stringent operational conditions. The introduction of microwave strategies represents a transformative shift, offering rapid response, high-temperature energy, and superior controllability. Notably, non-liquid-phase advanced microwave technology holds promise for introducing novel models and discoveries compared to traditional liquid-phase microwave methods. This review examines the nuanced applications of microwave technology in electrocatalyst structural engineering, emphasizing its pivotal role in the energy paradigm and addressing challenges in conventional methods. The ensuing discussion explores the profound impact of advanced microwave strategies on electrocatalyst structural engineering, highlighting discernible advantages in optimizing performance. Various applications of advanced microwave techniques in electrocatalysis are comprehensively discussed, providing a forward-looking perspective on their untapped potential to propel transformative strides in renewable energy research. It provides a forward-looking perspective, delving into the untapped potential of microwaves to propel transformative strides in renewable energy research.
Collapse
Affiliation(s)
- Qingxiang Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Guangyu Fang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Zhiao Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Jiayue Guo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Yongfei You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Huanyu Jin
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Institute for Sustainability, Energy, and Resources, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jun Wan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| |
Collapse
|