1
|
Yang K, Zhang J, Zhang C, Guan J, Ling S, Shao Z. Hierarchical design of silkworm silk for functional composites. Chem Soc Rev 2025. [PMID: 40237181 DOI: 10.1039/d4cs00776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Silk-reinforced composites (SRCs) manifest the unique properties of silkworm silk fibers, offering enhanced mechanical strength, biocompatibility, and biodegradability. These composites present an eco-friendly alternative to conventional synthetic materials, with applications expanding beyond biomedical engineering, flexible electronics, and environmental filtration. This review explores the diverse forms of silkworm silk fibers including fabrics, long fibers, and nanofibrils, for functional composites. It highlights advancements in composite design and processing techniques that allow precise engineering of mechanical and functional performance. Despite substantial progress, challenges remain in making optimally functionalized SRCs with multi-faceted performance and understanding the mechanics for reverse-design of SRCs. Future research should focus on the unique sustainable, biodegradable and biocompatible advantages and embrace advanced processing technology, as well as artificial intelligence-assisted material design to exploit the full potential of SRCs. This review on SRCs will offer a foundation for future advancements in multifunctional and high-performance silk-based composites.
Collapse
Affiliation(s)
- Kang Yang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.
| | - Jingwu Zhang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Chen Zhang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Juan Guan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|
2
|
Zhang Y, Ding X, Yang Z, Wang J, Li C, Zhou G. Emerging Microfluidic Building Blocks for Cultured Meat Construction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8771-8793. [PMID: 39884858 DOI: 10.1021/acsami.4c19276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Cultured meat aims to produce meat mass by culturing cells and tissues based on the muscle regeneration mechanism, and is considered an alternative to raising and slaughtering livestock. Hydrogel building blocks are commonly used as substrates for cell culture in tissue engineering and cultured meat because of their high water content, biocompatibility, and similar three-dimensional (3D) environment to the cellular niche in vivo. With the characteristics of precise manipulation of fluids, microfluidics exhibits advantages in the fabrication of building blocks with different structures and components, which have been widely applied in tissue regeneration. Microfluidic building blocks show promising prospects in the field of cultured meat; however, few reviews on the application of microfluidic building blocks in cultured meat have been published. This review outlines the recent status and prospects of the use of microfluidic building blocks in cultured meat. Starting with the introduction of cells and materials for cultured meat tissue construction, we then describe the diverse structures of the fabricated building blocks, including microspheres, microfibers, and microsphere-microfiber hybrid systems. Next, the stacking strategies for tissue construction are highlighted in detail. Finally, challenges and future prospects for developing microfluidic building blocks for cultured meat are discussed.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Ding
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zijiang Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Pardo A, Gomez‐Florit M, Davidson MD, Öztürk‐Öncel MÖ, Domingues RMA, Burdick JA, Gomes ME. Hierarchical Design of Tissue-Mimetic Fibrillar Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2303167. [PMID: 38400658 PMCID: PMC11209813 DOI: 10.1002/adhm.202303167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Most tissues of the human body present hierarchical fibrillar extracellular matrices (ECMs) that have a strong influence over their physicochemical properties and biological behavior. Of great interest is the introduction of this fibrillar structure to hydrogels, particularly due to the water-rich composition, cytocompatibility, and tunable properties of this class of biomaterials. Here, the main bottom-up fabrication strategies for the design and production of hierarchical biomimetic fibrillar hydrogels and their most representative applications in the fields of tissue engineering and regenerative medicine are reviewed. For example, the controlled assembly/arrangement of peptides, polymeric micelles, cellulose nanoparticles (NPs), and magnetically responsive nanostructures, among others, into fibrillar hydrogels is discussed, as well as their potential use as fibrillar-like hydrogels (e.g., those from cellulose NPs) with key biofunctionalities such as electrical conductivity or remote stimulation. Finally, the major remaining barriers to the clinical translation of fibrillar hydrogels and potential future directions of research in this field are discussed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | - Manuel Gomez‐Florit
- Health Research Institute of the Balearic Islands (IdISBa)Palma07010Spain
- Research Unit, Son Espases University Hospital (HUSE)Palma07010Spain
- Group of Cell Therapy and Tissue Engineering (TERCIT)Research Institute on Health Sciences (IUNICS)University of the Balearic Islands (UIB)Ctra. Valldemossa km 7.5Palma07122Spain
| | - Matthew D. Davidson
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Meftune Özgen Öztürk‐Öncel
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Jason A. Burdick
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| |
Collapse
|
4
|
Fu F, Liu D, Wu Y. Silk-based conductive materials for smart biointerfaces. SMART MEDICINE 2023; 2:e20230004. [PMID: 39188283 PMCID: PMC11236014 DOI: 10.1002/smmd.20230004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 08/28/2024]
Abstract
Silk-based conductive materials are widely used in biointerface applications, such as artificial epidermal sensors, soft and implantable bioelectronics, and tissue/cell scaffolds. Such biointerface materials require coordinated physicochemical, biological, and mechanical properties to meet current practical needs and future sophisticated demands. However, it remains a challenge to formulate silk-based advanced materials with high electrical conductivity, good biocompatibility, mechanical robustness, and in some cases, tissue adhesion ability without compromising other physicochemical properties. In this review, we highlight recent progress in the development of functional conductive silk-based advanced materials with different morphologies. Then, we reviewed the advanced paradigms of these silk materials applied as wearable flexible sensors, implantable electronics, and tissue/cell engineering with perspectives on the application challenges. Silk-based conductive materials can serve as promising building blocks for biomedical devices in personalized healthcare and other fields of bioengineering.
Collapse
Affiliation(s)
- Fanfan Fu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Dongmei Liu
- School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yilun Wu
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
5
|
Sugioka H, Nakamura H. The weaving of the carbon fiber using induced-charge electro-osmosis with DC–AC alternating switching. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Abrishamkar A, Nilghaz A, Saadatmand M, Naeimirad M, deMello AJ. Microfluidic-assisted fiber production: Potentials, limitations, and prospects. BIOMICROFLUIDICS 2022; 16:061504. [PMID: 36406340 PMCID: PMC9674390 DOI: 10.1063/5.0129108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
Besides the conventional fiber production methods, microfluidics has emerged as a promising approach for the engineered spinning of fibrous materials and offers excellent potential for fiber manufacturing in a controlled and straightforward manner. This method facilitates low-speed prototype synthesis of fibers for diverse applications while providing superior control over reaction conditions, efficient use of precursor solutions, reagent mixing, and process parameters. This article reviews recent advances in microfluidic technology for the fabrication of fibrous materials with different morphologies and a variety of properties aimed at various applications. First, the basic principles, as well as the latest developments and achievements of microfluidic-based techniques for fiber production, are introduced. Specifically, microfluidic platforms made of glass, polymers, and/or metals, including but not limited to microfluidic chips, capillary-based devices, and three-dimensional printed devices are summarized. Then, fiber production from various materials, such as alginate, gelatin, silk, collagen, and chitosan, using different microfluidic platforms with a broad range of cross-linking agents and mechanisms is described. Therefore, microfluidic spun fibers with diverse diameters ranging from submicrometer scales to hundreds of micrometers and structures, such as cylindrical, hollow, grooved, flat, core-shell, heterogeneous, helical, and peapod-like morphologies, with tunable sizes and mechanical properties are discussed in detail. Subsequently, the practical applications of microfluidic spun fibers are highlighted in sensors for biomedical or optical purposes, scaffolds for culture or encapsulation of cells in tissue engineering, and drug delivery. Finally, different limitations and challenges of the current microfluidic technologies, as well as the future perspectives and concluding remarks, are presented.
Collapse
Affiliation(s)
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 11155-9465 Tehran, Iran
| | - Mohammadreza Naeimirad
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, 67144-14971 Kermanshah, Iran
| | - Andrew J. deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg1, 8049 Zurich, Switzerland
| |
Collapse
|
7
|
Yao Y, Allardyce BJ, Rajkhowa R, Hegh D, Qin S, Usman KA, Mota-Santiago P, Zhang J, Lynch P, Wang X, Kaplan DL, Razal JM. Toughening Wet-Spun Silk Fibers by Silk Nanofiber Templating. Macromol Rapid Commun 2021; 43:e2100891. [PMID: 34939252 DOI: 10.1002/marc.202100891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/10/2022]
Abstract
Regenerated silk fibers typically fall short of silkworm cocoon fibers in mechanical properties due to reduced fiber crystal structure and alignment. One approach to address this has been to employ inorganic materials as reinforcing agents. The present study avoids the need for synthetic additives, demonstrating the first use of exfoliated silk nanofibers to control silk solution crystallization, resulting in all-silk pseudocomposite fibers with remarkable mechanical properties. Incorporating only 0.06 wt. % silk nanofibers led to a ∼44% increase in tensile strength (over 600 MPa) and ∼33% increase in toughness (over 200 kJ/kg) compared with fibers without silk nanofibers. These remarkable properties can be attributed to nanofiber crystal seeding in conjunction with fiber draw. The crystallinity nearly doubled from ∼17% for fiber spun from pure silk solution to ∼30% for the silk nanofiber reinforced sample. The latter fiber also shows a high degree of crystal orientation with a Herman's orientation factor of 0.93, a value which approaches that of natural degummed B. mori silk cocoon fiber (0.96). This study provides a strong foundation to guide the development of simple, eco-friendly methods to spin regenerated silk with excellent properties and a hierarchical structure that mimics natural silk. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ya Yao
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Benjamin J Allardyce
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Rangam Rajkhowa
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Dylan Hegh
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Si Qin
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Ken Aldren Usman
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | | | - Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Peter Lynch
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| |
Collapse
|
8
|
Lüken A, Geiger M, Steinbeck L, Joel A, Lampert A, Linkhorst J, Wessling M. Biocompatible Micron-Scale Silk Fibers Fabricated by Microfluidic Wet Spinning. Adv Healthc Mater 2021; 10:e2100898. [PMID: 34331524 PMCID: PMC11468244 DOI: 10.1002/adhm.202100898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Indexed: 12/15/2022]
Abstract
For successful material deployment in tissue engineering, the material itself, its mechanical properties, and the microscopic geometry of the product are of particular interest. While silk is a widely applied protein-based tissue engineering material with strong mechanical properties, the size and shape of artificially spun silk fibers are limited by existing processes. This study adjusts a microfluidic spinneret to manufacture micron-sized wet-spun fibers with three different materials enabling diverse geometries for tissue engineering applications. The spinneret is direct laser written (DLW) inside a microfluidic polydimethylsiloxane (PDMS) chip using two-photon lithography, applying a novel surface treatment that enables a tight print-channel sealing. Alginate, polyacrylonitrile, and silk fibers with diameters down to 1 µm are spun, while the spinneret geometry controls the shape of the silk fiber, and the spinning process tailors the mechanical property. Cell-cultivation experiments affirm bio-compatibility and showcase an interplay between the cell-sized fibers and cells. The presented spinning process pushes the boundaries of fiber fabrication toward smaller diameters and more complex shapes with increased surface-to-volume ratio and will substantially contribute to future tailored tissue engineering materials for healthcare applications.
Collapse
Affiliation(s)
- Arne Lüken
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 51Aachen52074Germany
| | - Matthias Geiger
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 51Aachen52074Germany
| | - Lea Steinbeck
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 51Aachen52074Germany
| | - Anna‐Christin Joel
- Institute of Biology IIRWTH Aachen UniversityWorringerweg 3Aachen52074Germany
| | - Angelika Lampert
- Institute of PhysiologyUniklinik RWTH Aachen UniversityPauwelsstraße 30Aachen52074Germany
| | - John Linkhorst
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 51Aachen52074Germany
| | - Matthias Wessling
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 51Aachen52074Germany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52074Germany
| |
Collapse
|
9
|
Naskar D, Sapru S, Ghosh AK, Reis RL, Dey T, Kundu SC. Nonmulberry silk proteins: multipurpose ingredient in bio-functional assembly. Biomed Mater 2021; 16. [PMID: 34428758 DOI: 10.1088/1748-605x/ac20a0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 01/27/2023]
Abstract
The emerging field of tissue engineering and regenerative medicines utilising artificial polymers is facing many problems. Despite having mechanical stability, non-toxicity and biodegradability, most of them lack cytocompatibility and biocompatibility. Natural polymers (such as collagen, hyaluronic acid, fibrin, fibroin, and others), including blends, are introduced to the field to solve some of the relevant issues. Another natural biopolymer: silkworm silk gained special attention primarily due to its specific biophysical, biochemical, and material properties, worldwide availability, and cost-effectiveness. Silk proteins, namely fibroin and sericin extracted from domesticated mulberry silkwormBombyx mori, are studied extensively in the last few decades for tissue engineering. Wild nonmulberry silkworm species, originated from India and other parts of the world, also produce silk proteins with variations in their nature and properties. Among the nonmulberry silkworm species,Antheraea mylitta(Indian Tropical Tasar),A. assamensis/A. assama(Indian Muga), andSamia ricini/Philosamia ricini(Indian Eri), along withA. pernyi(Chinese temperate Oak Tasar/Tussah) andA. yamamai(Japanese Oak Tasar) exhibit inherent tripeptide motifs of arginyl glycyl aspartic acid in their fibroin amino acid sequences, which support their candidacy as the potential biomaterials. Similarly, sericin isolated from such wild species delivers unique properties and is used as anti-apoptotic and growth-inducing factors in regenerative medicines. Other characteristics such as biodegradability, biocompatibility, and non-inflammatory nature make it suitable for tissue engineering and regenerative medicine based applications. A diverse range of matrices, including but not limited to nano-micro scale structures, nanofibres, thin films, hydrogels, and porous scaffolds, are prepared from the silk proteins (fibroins and sericins) for biomedical and tissue engineering research. This review aims to represent the progress made in medical and non-medical applications in the last couple of years and depict the present status of the investigations on Indian nonmulberry silk-based matrices as a particular reference due to its remarkable potentiality of regeneration of different types of tissues. It also discusses the future perspective in tissue engineering and regenerative medicines in the context of developing cutting-edge techniques such as 3D printing/bioprinting, microfluidics, organ-on-a-chip, and other electronics, optical and thermal property-based applications.
Collapse
Affiliation(s)
- Deboki Naskar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,Present address: Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Sunaina Sapru
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,Present address: Robert H. Smith Faculty of Agriculture, Food and Environment, The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, IL, Israel
| | - Ananta K Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-4805-017 Barco, Guimaraes, Portugal
| | - Tuli Dey
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Subhas C Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-4805-017 Barco, Guimaraes, Portugal
| |
Collapse
|
10
|
Tonndorf R, Aibibu D, Cherif C. Isotropic and Anisotropic Scaffolds for Tissue Engineering: Collagen, Conventional, and Textile Fabrication Technologies and Properties. Int J Mol Sci 2021; 22:9561. [PMID: 34502469 PMCID: PMC8431235 DOI: 10.3390/ijms22179561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
In this review article, tissue engineering and regenerative medicine are briefly explained and the importance of scaffolds is highlighted. Furthermore, the requirements of scaffolds and how they can be fulfilled by using specific biomaterials and fabrication methods are presented. Detailed insight is given into the two biopolymers chitosan and collagen. The fabrication methods are divided into two categories: isotropic and anisotropic scaffold fabrication methods. Processable biomaterials and achievable pore sizes are assigned to each method. In addition, fiber spinning methods and textile fabrication methods used to produce anisotropic scaffolds are described in detail and the advantages of anisotropic scaffolds for tissue engineering and regenerative medicine are highlighted.
Collapse
Affiliation(s)
- Robert Tonndorf
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, 01069 Dresden, Germany; (D.A.); (C.C.)
| | | | | |
Collapse
|
11
|
Lu Q, Zhang F, Cheng W, Gao X, Ding Z, Zhang X, Lu Q, Kaplan DL. Nerve Guidance Conduits with Hierarchical Anisotropic Architecture for Peripheral Nerve Regeneration. Adv Healthc Mater 2021; 10:e2100427. [PMID: 34038626 PMCID: PMC8295195 DOI: 10.1002/adhm.202100427] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Nerve guidance conduits with multifunctional features could offer microenvironments for improved nerve regeneration and functional recovery. However, the challenge remains to optimize multiple cues in nerve conduit systems due to the interplay of these factors during fabrication. Here, a modular assembly for the fabrication of nerve conduits is utilized to address the goal of incorporating multifunctional guidance cues for nerve regeneration. Silk-based hollow conduits with suitable size and mechanical properties, along with silk nanofiber fillers with tunable hierarchical anisotropic architectures and microporous structures, are developed and assembled into conduits. These conduits supported improves nerve regeneration in terms of cell proliferation (Schwann and PC12 cells) and growth factor secretion (BDNF, brain-derived neurotrophic factor) in vitro, and the in vivo repair and functional recovery of rat sciatic nerve defects. Nerve regeneration using these new conduit designs is comparable to autografts, providing a path towards future clinical impact.
Collapse
Affiliation(s)
- Qingqing Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Feng Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Xiang Gao
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
12
|
Ding Z, Cheng W, Mia MS, Lu Q. Silk Biomaterials for Bone Tissue Engineering. Macromol Biosci 2021; 21:e2100153. [PMID: 34117836 DOI: 10.1002/mabi.202100153] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Silk is a natural fibrous polymer with application potential in regenerative medicine. Increasing interest remains for silk materials in bone tissue engineering due to their characteristics in biocompatibility, biodegradability and mechanical properties. Plenty of the in vitro and in vivo studies confirmed the advantages of silk in accelerating bone regeneration. Silk is processed into scaffolds, hydrogels, and films to facilitate different bone regenerative applications. Bioactive factors such as growth factors and drugs, and stem cells are introduced to silk-based matrices to create friendly and osteogenic microenvironments, directing cell behaviors and bone regeneration. The recent progress in silk-based bone biomaterials is discussed and focused on different fabrication and functionalization methods related to osteogenesis. The challenges and potential targets of silk bone materials are highlighted to evaluate the future development of silk-based bone materials.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Md Shipan Mia
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
13
|
Wu R, Kim T. Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics. LAB ON A CHIP 2021; 21:1217-1240. [PMID: 33710187 DOI: 10.1039/d0lc01208d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shape characteristics, which include the physical dimensions (scale), apparent morphology, surface features, and structure, are essential factors of fibrous materials and determine many of their properties. Microfluidic technologies have recently been proposed as an approach for producing one-dimensional (1D) fibers with controllable shape characteristics and particle alignment, which impart specific functionality to the fiber. Moreover, superfine 1D fibers with a high surface area and ordered structure have many potential applications as they can be directly braided or woven into textiles, clothes, and tissues with two- or three-dimensional (2D or 3D) structures. Previous reviews of microfluidic spinning have not focus on the importance of the shape characteristic on fiber performance and their use in intelligent fiber design. Here, the latest achievements in microfluidic approaches for fiber-device fabrication are reviewed considering the underlying preparation principles, shape characteristics, and functionalization of the fibers. Additionally, intelligent fiber devices with shapes tailored by microfluidic approaches are discussed, including 1D sensors and actuators, luminous fibers, and devices for encoding, energy harvesting, water collection, and tissue engineering applications. Finally, recent progress, challenges, and future perspectives of the microfluidic approaches for fiber device fabrication are discussed.
Collapse
Affiliation(s)
- Ronghui Wu
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | | |
Collapse
|
14
|
Toprakcioglu Z, Knowles TPJ. Shear-mediated sol-gel transition of regenerated silk allows the formation of Janus-like microgels. Sci Rep 2021; 11:6673. [PMID: 33758259 PMCID: PMC7988050 DOI: 10.1038/s41598-021-85199-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Microcapsules and microgels consisting of macromolecular networks have received increasing attention due to their biomedical and pharmaceutical applications. Protein microgels and in particular silk-based microcapsules have desirable properties due to their biocompatibility and lack of toxicity. Typically such structures formed through emulsion templating are spherical in geometry due to interfacial tension. However, approaches to synthesis particles with more complex and non-spherical geometries are sought due to their packing properties and cargo release characteristics. Here, we describe a droplet-microfluidic strategy for generating asymmetric tubular-like microgels from reconstituted silk fibroin; a major component of native silk. It was determined using fluorescence microscopy, that the shear stress within the microchannel promotes surface protein aggregation, resulting in the asymmetric morphology of the microgels. Moreover, the structural transition that the protein undergoes was confirmed using FTIR. Crucially, the core of the microgels remains liquid, while the surface has fully aggregated into a fibrillar network. Additionally, we show that microgel morphology could be controlled by varying the dispersed to continuous phase flow rates, while it was determined that the radius of curvature of the asymmetric microgels is correlated to the wall shear stress. By comparing the surface fluorescence intensity of the microgels as a function of radius of curvature, the effect of the shear stress on the amount of aggregation could be quantified. Finally, the potential use of these asymmetric microgels as carriers of cargo molecules is showcased. As the core of the microgel remains liquid but the shell has gelled, this approach is highly suitable for the storage of bio-active cargo molecules such as antibodies, making such a delivery system attractive in the context of biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Zenon Toprakcioglu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|