1
|
Li Y, Li X, Zhu L, Liu T, Huang L. Chitosan-based biomaterials for bone tissue engineering. Int J Biol Macromol 2025; 304:140923. [PMID: 39947561 DOI: 10.1016/j.ijbiomac.2025.140923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Common critical size bone defects encountered in clinical practice often result in inadequate bone regeneration,primarily due to the extent of damage surpassing the inherent capacity of the body for self-healing. Bone tissue engineering scaffolds possess the desirable characteristics of biomimetic bone structure, simulated extracellular matrix, optimal mechanical strength, and biological functionality, rendering them the preferred option for the treatment of bone defects. Chitosan demonstrates favorable biocompatibility, plasticity, and a range of biological activities, rendering it a highly appealing material. Chitosan and its derivatives have been found to exert an impact on bone repair through their ability to modulate macrophage polarization, angiogenesis, and the delicate equilibrium of bone remodeling. However, the efficacy of pure chitosan is constrained, necessitating its combination with other bioactive substances to achieve an optimal biomimetic scaffold that is compatible with the specific bone defect site. Chitosan is commonly utilized in the field of bone repair in four different application forms: rigid scaffold, hydrogel, membranes, and microspheres. In order to enhance comprehension of the benefits and constraints associated with chitosan, this review provides a comprehensive overview of the structure and biological properties of chitosan, the molecular mechanisms by which chitosan promotes osteogenic differentiation, the diverse methods of chitosan preparation for various applications, and the impacts of chitosan when loaded with bioactive substances.
Collapse
Affiliation(s)
- Youbin Li
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
2
|
Xu H, Cui Y, Tian Y, Dou M, Sun S, Wang J, Wu D. Nanoparticle-Based Drug Delivery Systems for Enhancing Bone Regeneration. ACS Biomater Sci Eng 2024; 10:1302-1322. [PMID: 38346448 DOI: 10.1021/acsbiomaterials.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The treatment of bone defects has been a long-standing challenge in clinical practice. Among the various bone tissue engineering approaches, there has been substantial progress in the development of drug delivery systems based on functional drugs and appropriate carrier materials owing to technological advances in recent years. A large number of materials based on functional nanocarriers have been developed and applied to improve the complex osteogenic microenvironment, including for promoting osteogenic activity, inhibiting osteoclast activity, and exerting certain antibacterial effects. This Review discusses the physicochemical properties, drug loading mechanisms, advantages and disadvantages of nanoparticles (NPs) used for constructing drug delivery systems. In addition, we provide an overview of the osteogenic microenvironment regulation mechanism of drug delivery systems based on nanoparticle (NP) carriers and the construction strategies of drug delivery systems. Finally, the advantages and disadvantages of NP carriers are summarized along with their prospects and future research trends in bone tissue engineering. This Review thus provides advanced strategies for the design and application of drug delivery systems based on NPs in the treatment of bone defects.
Collapse
Affiliation(s)
- Hang Xu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Minghan Dou
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| |
Collapse
|
3
|
Tang H, Yu Y, Zhan X, Chai Y, Zheng Y, Liu Y, Xia D, Lin H. Zeolite imidazolate framework-8 in bone regeneration: A systematic review. J Control Release 2024; 365:558-582. [PMID: 38042375 DOI: 10.1016/j.jconrel.2023.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Zeolite imidazolate framework-8 (ZIF-8) is a biomaterial that has been increasingly studied in recent years. It has several applications such as bone regeneration, promotion of angiogenesis, drug loading, and antibacterial activity, and exerts multiple effects to deal with various problems in the process of bone regeneration. This systematic review aims to provide an overview of the applications and effectiveness of ZIF-8 in bone regeneration. A search of papers published in the PubMed, Web of Science, Embase, and Cochrane Library databases revealed 532 relevant studies. Title, abstract, and full-text screening resulted in 39 papers being included in the review, including 39 in vitro and 22 animal studies. Appropriate concentrations of nano ZIF-8 can promote cell proliferation and osteogenic differentiation by releasing Zn2+ and entering the cell, whereas high doses of ZIF-8 are cytotoxic and inhibit osteogenic differentiation. In addition, five studies confirmed that ZIF-8 exhibits good vasogenic activity. In all in vivo experiments, nano ZIF-8 promoted bone formation. These results indicate that, at appropriate concentrations, materials containing ZIF-8 promote bone regeneration more than materials without ZIF-8, and with characteristics such as promoting angiogenesis, drug loading, and antibacterial activity, it is expected to show promising applications in the field of bone regeneration. STATEMENT OF SIGNIFICANCE: This manuscript reviewed the use of ZIF-8 in bone regeneration, clarified the biocompatibility and effectiveness in promoting bone regeneration of ZIF-8 materials, and discussed the possible mechanisms and factors affecting its promotion of bone regeneration. Overall, this study provides a better understanding of the latest advances in the field of bone regeneration of ZIF-8, serves as a design guide, and contributes to the design of future experimental studies.
Collapse
Affiliation(s)
- Hao Tang
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yameng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xinxin Zhan
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yuan Chai
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| | - Hong Lin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| |
Collapse
|
4
|
El-Wakil N, Kamel R, Mahmoud AA, Dufresne A, Abouzeid RE, Abo El-Fadl M, Maged A. Risedronate-loaded aerogel scaffolds for bone regeneration. Drug Deliv 2023; 30:51-63. [PMID: 36474425 PMCID: PMC9937015 DOI: 10.1080/10717544.2022.2152135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sugarcane bagasse-derived nanofibrillated cellulose (NFC), a type of cellulose with a fibrous structure, is potentially used in the pharmaceutical field. Regeneration of this cellulose using a green process offers a more accessible and less ordered cellulose II structure (amorphous cellulose; AmC). Furthermore, the preparation of cross-linked cellulose (NFC/AmC) provides a dual advantage by building a structural block that could exhibit distinct mechanical properties. 3D aerogel scaffolds loaded with risedronate were prepared in our study using NFC or cross-linked cellulose (NFC/AmC), then combined with different concentrations of chitosan. Results proved that the aerogel scaffolds composed of NFC and chitosan had significantly improved the mechanical properties and retarded drug release compared to all other fabricated aerogel scaffolds. The aerogel scaffolds containing the highest concentration of chitosan (SC-T3) attained the highest compressive strength and mean release time values (415 ± 41.80 kPa and 2.61 ± 0.23 h, respectively). Scanning electron microscope images proved the uniform highly porous microstructure of SC-T3 with interconnectedness. All the tested medicated as well as unmedicated aerogel scaffolds had the ability to regenerate bone as assessed using the MG-63 cell line, with the former attaining a higher effect than the latter. However, SC-T3 aerogel scaffolds possessed a lower regenerative effect than those composed of NFC only. This study highlights the promising approach of the use of biopolymers derived from agro-wastes for tissue engineering.
Collapse
Affiliation(s)
- Nahla El-Wakil
- Cellulose and Paper Department, National Research Centre, Giza, Egypt
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Giza, Egypt
| | - Azza A. Mahmoud
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt,CONTACT Azza A. Mahmoud Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| | - Alain Dufresne
- CNRS, Grenoble INP, LGP2, Université Grenoble Alpes, Grenoble, France
| | - Ragab E. Abouzeid
- Cellulose and Paper Department, National Research Centre, Giza, Egypt
| | - Mahmoud T. Abo El-Fadl
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Amr Maged
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt,Pharmaceutical Factory, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
5
|
Zhao C, Shu C, Yu J, Zhu Y. Metal-organic frameworks functionalized biomaterials for promoting bone repair. Mater Today Bio 2023; 21:100717. [PMID: 37545559 PMCID: PMC10401359 DOI: 10.1016/j.mtbio.2023.100717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Bone defects induced by bone trauma, tumors and osteoarthritis greatly affect the life quality and health of patients. The biomaterials with numerous advantages are becoming the most preferred options for repairing bone defects and treating orthopedic diseases. However, their repairing effects remains unsatisfactory, especially in bone defects suffering from tumor, inflammation, and/or bacterial infection. There are several strategies to functionalize biomaterials, but a more general and efficient method is essential for accomplishing the functionalization of biomaterials. Possessing high specific surface, high porosity, controlled degradability and variable composition, metal-organic frameworks (MOFs) materials are inherently advantageous for functionalizing biomaterials, with tremendous improvements having been achieved. This review summarizes recent progresses in MOFs functionalized biomaterials for promoting bone repair and therapeutic effects. In specific, by utilizing various properties of diverse MOFs materials, integrated MOFs functionalized biomaterials achieve enhanced bone regeneration, antibacterial, anti-inflammatory and anti-tumor functions. Finally, the summary and prospects of on the development of MOFs-functionalized biomaterials for promoting bone repair were discussed.
Collapse
Affiliation(s)
- Chaoqian Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Chaoqin Shu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jiangming Yu
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, 200336, PR China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
6
|
Ganesh SS, Anushikaa R, Swetha Victoria VS, Lavanya K, Shanmugavadivu A, Selvamurugan N. Recent Advancements in Electrospun Chitin and Chitosan Nanofibers for Bone Tissue Engineering Applications. J Funct Biomater 2023; 14:jfb14050288. [PMID: 37233398 DOI: 10.3390/jfb14050288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Treatment of large segmental bone loss caused by fractures, osteomyelitis, and non-union results in expenses of around USD 300,000 per case. Moreover, the worst-case scenario results in amputation in 10% to 14.5% of cases. Biomaterials, cells, and regulatory elements are employed in bone tissue engineering (BTE) to create biosynthetic bone grafts with effective functionalization that can aid in the restoration of such fractured bones, preventing amputation and alleviating expenses. Chitin (CT) and chitosan (CS) are two of the most prevalent natural biopolymers utilized in the fields of biomaterials and BTE. To offer the structural and biochemical cues for augmenting bone formation, CT and CS can be employed alone or in combination with other biomaterials in the form of nanofibers (NFs). When compared with several fabrication methods available to produce scaffolds, electrospinning is regarded as superior since it enables the development of nanostructured scaffolds utilizing biopolymers. Electrospun nanofibers (ENFs) offer unique characteristics, including morphological resemblance to the extracellular matrix, high surface-area-to-volume ratio, permeability, porosity, and stability. This review elaborates on the recent strategies employed utilizing CT and CS ENFs and their biocomposites in BTE. We also summarize their implementation in supporting and delivering an osteogenic response to treat critical bone defects and their perspectives on rejuvenation. The CT- and CS-based ENF composite biomaterials show promise as potential constructions for bone tissue creation.
Collapse
Affiliation(s)
- S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Ramprasad Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Venkadesan Sri Swetha Victoria
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Krishnaraj Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
7
|
Xie W, Chen J, Cheng X, Feng H, Zhang X, Zhu Z, Dong S, Wan Q, Pei X, Wang J. Multi-Mechanism Antibacterial Strategies Enabled by Synergistic Activity of Metal-Organic Framework-Based Nanosystem for Infected Tissue Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205941. [PMID: 36587967 DOI: 10.1002/smll.202205941] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Drug-resistant bacterial infection impairs tissue regeneration and is a challenging clinical problem. Metal-organic frameworks (MOFs)-based photodynamic therapy (PDT) opens up a new era for antibiotic-free infection treatment. However, the MOF-based PDT normally encounters limited photon absorbance under visible light and notorious recombination of photogenerated holes and electrons, which significantly impede their applications. Herein, a MOFs-based nanosystem (AgNPs@MOFs) with enhanced visible light response and charge carrier separation is developed by modifying MOFs with silver nanoparticles (AgNPs) to improve PDT efficiency. The AgNPs@MOFs with enhanced photodynamic performance under visible light irradiation mainly disrupt bacteria translation process and the metabolism of purine and pyrimidine. In addition, the introduction of AgNPs endows nanosystems with chemotherapy ability, which causes destructive effect on bacterial cell membrane, including membrane ATPase protein and fatty acids. AgNPs@MOFs show excellent synergistic drug-resistant bacterial killing efficiency through multiple mechanisms, which further restrain bacterial resistance. In addition, biocompatible AgNPs@MOFs pose potential tissue regeneration ability in both Methicillin-resistant Staphylococcus aureus (MRSA)-related soft and hard tissue infection. Overall, this study provides a promising perspective in the exploration of AgNPs@MOFs as nano antibacterial medicine against drug-resistant bacteria for infected tissue regeneration in the future.
Collapse
Affiliation(s)
- Wenjia Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Hao Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shanshan Dong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Wijesundara YH, Herbert FC, Kumari S, Howlett T, Koirala S, Trashi O, Trashi I, Al-Kharji NM, Gassensmith JJ. Rip it, stitch it, click it: A Chemist's guide to VLP manipulation. Virology 2022; 577:105-123. [PMID: 36343470 DOI: 10.1016/j.virol.2022.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Viruses are some of nature's most ubiquitous self-assembled molecular containers. Evolutionary pressures have created some incredibly robust, thermally, and enzymatically resistant carriers to transport delicate genetic information safely. Virus-like particles (VLPs) are human-engineered non-infectious systems that inherit the parent virus' ability to self-assemble under controlled conditions while being non-infectious. VLPs and plant-based viral nanoparticles are becoming increasingly popular in medicine as their self-assembly properties are exploitable for applications ranging from diagnostic tools to targeted drug delivery. Understanding the basic structure and principles underlying the assembly of higher-order structures has allowed researchers to disassemble (rip it), reassemble (stitch it), and functionalize (click it) these systems on demand. This review focuses on the current toolbox of strategies developed to manipulate these systems by ripping, stitching, and clicking to create new technologies in the biomedical space.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Thomas Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Shailendra Koirala
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Noora M Al-Kharji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA; Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA.
| |
Collapse
|
9
|
Zhu Z, Liu Y, Chen J, He Z, Tan P, He Y, Pei X, Wang J, Tan L, Wan Q. Structural-Functional Pluralistic Modification of Silk Fibroin via MOF Bridging for Advanced Wound Care. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204553. [PMID: 36307870 PMCID: PMC9762304 DOI: 10.1002/advs.202204553] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/25/2022] [Indexed: 05/31/2023]
Abstract
Silk fibroin (SF) is widely used to fabricate biomaterials for skin related wound caring or monitoring, and its hydrogel state are preferred for their adaptability and easy to use. However, in-depth development of SF hydrogel is restricted by their limited mechanical strength, increased risk of infection, and inability to accelerate tissue healing. Therefore, a structure-function pluralistic modification strategy using composite system of metal organic framework (MOF) as bridge expanding SF's biomedical application is proposed. After developing the photocuring and bonding SF hydrogel, a MOF drug-loading system is utilized to enhance hydrogel's structural strength while endowing its antibacterial and angiogenic properties, yielding a multifunctional SF hydrogel. The synergy between the MOF and SF proteins at the secondary structure level gives this hydrogel reliable mechanical strength, making it suitable for conventional wound treatment, whether for closing incisions quickly or acting as adhesive dressings (five times the bonding strength of ordinary fibrin glue). Additionally, with the antibacterial and angiogenic functions getting from MOF system, this modified SF hydrogel can even treat ischemic trauma with cartilage exposure. This multiple modification should contribute to the improvement of advanced wound care, by promoting SF application in the production of tissue engineering materials.
Collapse
Affiliation(s)
- Zhou Zhu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Yanhua Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Junyu Chen
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Zihan He
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Pengfei Tan
- College of Biomass Science & EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Xibo Pei
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Jian Wang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Lin Tan
- College of Biomass Science & EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Qianbing Wan
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
10
|
Li Y, Cai Y, Chen T, Bao X. Zeolites: A series of promising biomaterials in bone tissue engineering. Front Bioeng Biotechnol 2022; 10:1066552. [PMID: 36466336 PMCID: PMC9712446 DOI: 10.3389/fbioe.2022.1066552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 06/30/2024] Open
Abstract
As an important worldwide medical issue, bone defect exhibits a variety of physical and psychological consequences on sufferers. Some features of clinical treatments including bone grafting and limb shortening are not satisfactory. Recently, bone tissue engineering has been considered as the most effective approach to dealing with the issue of bone deformities. Meanwhile, a variety of biomaterials have been rationally designed and created for the bone regeneration and tissue repairing. Among all these admirable biomaterials for bone remodeling, zeolite-based materials can serve as efficient scaffold candidates with excellent osteo-inductivity. In addition, the porous nature and high biocompatibility of zeolites endow them with the ability as ideal substrates for cell adhesion and proliferation. More importantly, zeolites are investigated as potential coating materials for implants because they have been proven to increase osteo-conductivity and aid in local elastic modeling. Last but not least, zeolites can also be used to treat bone disorders and act as dietary supplements during the practical applications. Accordingly, numerous benefits of zeolite prompt us to summarize their recent biomedical progress including but not limited to the distinguishing characteristics, broad classifications, as well as promising usages in bone tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Xingfu Bao
- Department of Orthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
11
|
Wang N, Li Y, He F, Liu S, Liu Y, Peng J, Liu J, Yu C, Wang S. Assembly of Celastrol to Zeolitic Imidazolate Framework-8 by Coordination as a Novel Drug Delivery Strategy for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15091076. [PMID: 36145296 PMCID: PMC9504028 DOI: 10.3390/ph15091076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Celastrol (Cel), a compound derived from traditional Chinese medicine Tripterygium wilfordii Hook. F, has attracted considerable attention as an anticancer drug. However, its clinical application is limited due to its low bioavailability and potential toxicity. With the advancement of nanoscale metal organic frameworks (MOF), the nano-delivery of drugs can effectively improve those disadvantages. Nevertheless, hydrophobic drugs apparently cannot be encapsulated by the hydrophilic channels of MOF-based drug delivery systems. To address these issues, a new assembly strategy for hydrophobic Cel was developed by coordinating the deprotonated Cel to zeolitic imidazolate framework-8 (ZIF-8) with the assistance of triethylamine (Cel-ZIF-8). This strategy greatly elevates the assembly efficiency of Cel from less than 1% to ca. 80%. The resulted Cel-ZIF-8 remains stable in the physiological condition while dissociating and releasing Cel after a 45-minute incubation in an acidic tumor microenvironment (pH 5.5). Furthermore, Cel-ZIF-8 is proved to be easily taken up by cancer cells and exhibits a better therapeutic effect on tumor cells than free Cel. Overall, the Cel-ZIF-8 provides a novel assembly strategy for hydrophobic drugs, and the findings are envisaged to facilitate the application of Cel in cancer therapies.
Collapse
Affiliation(s)
- Na Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fei He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Susu Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinting Peng
- Department of Gynecology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Jiahui Liu
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (C.Y.); (S.W.); Tel./Fax: +86-10-64421335 (S.W.)
| | - Shihui Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (C.Y.); (S.W.); Tel./Fax: +86-10-64421335 (S.W.)
| |
Collapse
|
12
|
Liu Y, Xu Z, Qiao M, Cai H, Zhu Z. Metal-based nano-delivery platform for treating bone disease and regeneration. Front Chem 2022; 10:955993. [PMID: 36017162 PMCID: PMC9395639 DOI: 10.3389/fchem.2022.955993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Owing to their excellent characteristics, such as large specific surface area, favorable biosafety, and versatile application, nanomaterials have attracted significant attention in biomedical applications. Among them, metal-based nanomaterials containing various metal elements exhibit significant bone tissue regeneration potential, unique antibacterial properties, and advanced drug delivery functions, thus becoming crucial development platforms for bone tissue engineering and drug therapy for orthopedic diseases. Herein, metal-based drug-loaded nanomaterial platforms are classified and introduced, and the achievable drug-loading methods are comprehensively generalized. Furthermore, their applications in bone tissue engineering, osteoarthritis, orthopedic implant infection, bone tumor, and joint lubrication are reviewed in detail. Finally, the merits and demerits of the current metal-based drug-loaded nanomaterial platforms are critically discussed, and the challenges faced to realize their future applications are summarized.
Collapse
Affiliation(s)
| | | | | | - He Cai
- *Correspondence: He Cai, ; Zhou Zhu,
| | - Zhou Zhu
- *Correspondence: He Cai, ; Zhou Zhu,
| |
Collapse
|
13
|
Ren N, Liang N, Dong M, Feng Z, Meng L, Sun C, Wang A, Yu X, Wang W, Xie J, Liu C, Liu H. Stem Cell Membrane-Encapsulated Zeolitic Imidazolate Framework-8: A Targeted Nano-Platform for Osteogenic Differentiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202485. [PMID: 35633288 DOI: 10.1002/smll.202202485] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Mesenchymal stem cells (MSCs) have been recognized as one of the most promising pharmaceutical multipotent cells, and a key step for their wide application is to safely and efficiently regulate their activities. Various methods have been proposed to regulate the directional differentiation of MSCs during tissue regeneration, such as nanoparticles and metal ions. Herein, nanoscale zeolitic imidazolate framework-8 (ZIF-8), a Zn-based metal-organic framework, is modified to direct MSCs toward an osteoblast lineage. Specifically, ZIF-8 nanoparticles are encapsulated using stem cell membranes (SCMs) to mimic natural molecules and improve the biocompatibility and targeted ability toward MSCs. SCM/ZIF-8 nanoparticles adjust the sustained release of Zn2+ , and promote their specific internalization toward MSCs. The internalized SCM/ZIF-8 nanoparticles show excellent biocompatibility, and increase MSCs' osteogenic potentials. Moreover, RNA-sequencing results elucidate that the activated cyclic adenosine 3,5-monophosphate (cAMP)-PKA-CREB signaling pathway can be dominant in accelerating osteogenic differentiation. In vivo, SCM/ZIF-8 nanoparticles greatly promote the formation of new bone tissue in the femoral bone defect detected by 3D micro-CT, hematoxylin and eosin staining, and Masson staining after 4 weeks. Overall, the SCM-derived ZIF-8 nanostructures achieve the superior targeting ability, biocompatibility, and enhanced osteogenesis, providing a constructive design for tissue repair.
Collapse
Affiliation(s)
- Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Na Liang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Mengwei Dong
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Zhichao Feng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Ling Meng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Aizhu Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Xin Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Wenhan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Juan Xie
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chao Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Institute of Stomatology, Shandong University, Jinan, 250012, P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
14
|
Fan T, Chen L, Qiu S, Yang C, Hu L, Peng X, Zhang J, Yan Z. Synthesis of hierarchical porous ZIF-8/3DCNTs composite sensor for ultrasensitive detection of DA and DFT studies. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Barbosa JS, Mendes RF, Figueira F, Gaspar VM, Mano JF, Braga SS, Rocha J, Almeida Paz FA. Bone Tissue Disorders: Healing Through Coordination Chemistry. Chemistry 2020; 26:15416-15437. [DOI: 10.1002/chem.202004529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Jéssica S. Barbosa
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
- Department of Chemistry LAQV-REQUIMTE University of Aveiro 3810-193 Aveiro Portugal
| | - Ricardo F. Mendes
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| | - Flávio Figueira
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| | - Vítor M. Gaspar
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| | - João F. Mano
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| | - Susana S. Braga
- Department of Chemistry LAQV-REQUIMTE University of Aveiro 3810-193 Aveiro Portugal
| | - João Rocha
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| | - Filipe A. Almeida Paz
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|