1
|
Gnatowski P, Ansariaghmiuni M, Piłat E, Poostchi M, Kucińska-Lipka J, Yazdi MK, Ryl J, Ashrafizadeh M, Mottaghitalab F, Farokhi M, Saeb MR, Bączek T, Chen C, Lu Q. Hydrogel membranes in organ-on-a-chip devices: A review. Colloids Surf B Biointerfaces 2025; 251:114591. [PMID: 40054047 DOI: 10.1016/j.colsurfb.2025.114591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/31/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025]
Abstract
Organ-on-a-chip (OoC) devices represent advanced in vitro models enabling to mimic the human tissue architecture function and physiology, providing a promising alternative to the traditional animal testing methods. These devices combine the microfluidics with soft materials, specifically hydrogel membranes (HMs) for mimicking the extracellular matrix (ECM) and biological barriers, such as the blood-brain barrier (BBB). Hydrogels are ideal biomaterials for OoC systems because of their tunable properties, biocompatibility, biodegradability, and microscale self-assembly. The integration of HMs with OoC devices provides an effective way to develop dynamic, biologically relevant environments for supporting living cells targeted at drug discovery, disease modeling, and personalized medicine. Recent advancements in fabrication technologies such as additive manufacturing (3D printing), photolithography, and bioprinting have additionally advanced development of such systems. This review aims to outline the role of HMs in OoC platforms, highlighting their material properties, self-assembly behavior, and also challenges associated with their fabrication. Additionally, we visualize and discuss the latest progress made in utilizing HMs for applications in tissue engineering, drug development, and biosensing, with a focus on their interface dynamics and structural self-organization. The future perspective on OoC technology has also been patterned in order to provide a broader image on integration of OoC and HMs with personalized medicine and advanced drug delivery systems.
Collapse
Affiliation(s)
- Przemysław Gnatowski
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland; Department of Environmental Toxicology, Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa 23A, Gdańsk 80-204, Poland
| | - Maryam Ansariaghmiuni
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11365-9516, Iran
| | - Edyta Piłat
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland
| | - Maryam Poostchi
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland
| | - Mohsen Khodadadi Yazdi
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland.
| | - Chu Chen
- Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qi Lu
- Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Hong C, Lee Y, Chung H, Kim D, Kim J, Kim JW, Lee K, Kim SH. Micro-fragmented collagen hydrogel wound dressing: Enhanced porosity facilitates elevated stem cell survival and paracrine effects for accelerated wound maturation. Mater Today Bio 2025; 32:101678. [PMID: 40225133 PMCID: PMC11986482 DOI: 10.1016/j.mtbio.2025.101678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 04/15/2025] Open
Abstract
Human Adipose-derived stem cells (hADSCs), known for their mesenchymal stem cell properties, including multilineage differentiation and self-renewal, hold significant promise for chronic wound regeneration. Typically, hADSCs are utilized in cellular aggregates or hydrogels to enhance therapeutic efficacy. However, limitations such as reduced cell viability, inadequate mass transfer rates, and diminished paracrine effects hinder their clinical applications. This study explores an innovative approach by encapsulating hADSCs within a collagen/hyaluronic acid micro-fragmented collagen hydrogel wound dressing (MCWD). The resulting micro-fragmented collagen hydrogel-hADSC composite created through the integration of micro-sized hydrogel units and cells demonstrated markedly improved cell viability and activity, as well as superior therapeutic outcomes compared to conventional cell aggregates (CA) and collagen hydrogel wound dressings (CWD). In vitro assessments showed that the highly porous structure of MCWD promotes better mass transfer and enhances the viability and cytokine production of hADSCs associated with the paracrine effect. In vivo experiments further validated the effectiveness of the MCWD, revealing significant enhancements in cell proliferation, skin thickness restoration, collagen maturation, and blood vessel formation. These findings underscore the potential of MCWD as an advanced solution for wound healing applications.
Collapse
Affiliation(s)
- Changgi Hong
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngseop Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Haeun Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Dongwoo Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeongmin Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Wan Kim
- S.Biomedics Co., Ltd., Seoul, 04797, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
3
|
Datta D, Colaco V, Bandi SP, Dhas N, Janardhanam LSL, Singh S, Vora LK. Stimuli-Responsive Self-Healing Ionic Gels: A Promising Approach for Dermal and Tissue Engineering Applications. ACS Biomater Sci Eng 2025; 11:1338-1372. [PMID: 39999055 PMCID: PMC11897956 DOI: 10.1021/acsbiomaterials.4c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
The rapid increase in the number of stimuli-responsive polymers, also known as smart polymers, has significantly advanced their applications in various fields. These polymers can respond to multiple stimuli, such as temperature, pH, solvent, ionic strength, light, and electrical and magnetic fields, making them highly valuable in both the academic and industrial sectors. Recent studies have focused on developing hydrogels with self-healing properties that can autonomously recover their structural integrity and mechanical properties after damage. These hydrogels, formed through dynamic covalent reactions, exhibit superior biocompatibility, mechanical strength, and responsiveness to stimuli, particularly pH changes. However, conventional hydrogels are limited by their weak and brittle nature. To address this, ionizable moieties within polyelectrolytes can be tuned to create ionically cross-linked hydrogels, leveraging natural polymers such as alginate, chitosan, hyaluronic acid, and cellulose. The integration of ionic liquids into these hydrogels enhances their mechanical properties and conductivity, positioning them as significant self-healing agents. This review focuses on the emerging field of stimuli-responsive ionic-based hydrogels and explores their potential in dermal applications and tissue engineering.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Viola Colaco
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sony Priyanka Bandi
- Department
of Pharmacy, Birla Institute of Technology
and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Namdev Dhas
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Leela Sai Lokesh Janardhanam
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Sudarshan Singh
- Faculty
of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office
of Research Administrations, Chiang Mai
University, Chiang
Mai 50200, Thailand
| | - Lalitkumar K. Vora
- School of
Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| |
Collapse
|
4
|
Ghasempour A, Dehghan H, Mahmoudi M, Lavi Arab F. Biomimetic scaffolds loaded with mesenchymal stem cells (MSCs) or MSC-derived exosomes for enhanced wound healing. Stem Cell Res Ther 2024; 15:406. [PMID: 39522032 PMCID: PMC11549779 DOI: 10.1186/s13287-024-04012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Since wound healing is one of the most important medical challenges and common dressings have not been able to manage this challenge well today, efforts have been increased to achieve an advanced dressing. Mesenchymal stem cells and exosomes derived from them have shown high potential in healing and regenerating wounds due to their immunomodulatory, anti-inflammatory, immunosuppressive, and high regenerative capacities. However, challenges such as the short life of these cells, the low durability of these cells in the wound area, and the low stability of exosomes derived from them have resulted in limitations in their use for wound healing. Nowadays, different scaffolds are considered suitable biomaterials for wound healing. These scaffolds are made of natural or synthetic polymers and have shown promising potential for an ideal dressing that does not have the disadvantages of common dressings. One of the strategies that has attracted much attention today is using these scaffolds for seeding and delivering MSCs and their exosomes. This combined strategy has shown a high potential in enhancing the shelf life of cells and increasing the stability of exosomes. In this review, the combination of different scaffolds with different MSCs or their exosomes for wound healing has been comprehensively discussed.
Collapse
Affiliation(s)
- Alireza Ghasempour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Shaik R, Brown J, Xu J, Lamichhane R, Wang Y, Hong Y, Zhang G. Cardiac Matrix-Derived Granular Hydrogel Enhances Cell Function in 3D Culture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58346-58356. [PMID: 39413287 PMCID: PMC11542188 DOI: 10.1021/acsami.4c12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Hydrogels derived from decellularized porcine myocardial matrix have demonstrated significant potential as therapeutic delivery platforms for promoting cardiac repair after injury. Our previous study developed a fibrin-enriched cardiac matrix hydrogel to enhance its angiogenic capacities. However, the bulk hydrogel structure may limit their full potential in cell delivery. Recently, granular hydrogels have emerged as a promising class of biomaterials, offering unique features such as a highly interconnected porous structure that facilitates nutrient diffusion and enhances cell viability. Several techniques have been developed for fabricating various types of granular hydrogels, among which extrusion fragmentation is particularly appealing due to its adaptability to many types of hydrogels, low cost, and high scalability. In this study, we first confirmed the effects of the bulk cardiac matrix hydrogel on the viability of encapsulated human umbilical vein endothelial cells and human mesenchymal stem cells. We then tested the feasibility of producing granular hydrogels from both cardiac matrix and fibrin-enriched cardiac matrix through cellular cross-linking of microgels fabricated by extrusion fragmentation. Afterward, we examined the roles of the produced granular hydrogels in the embedded cells and cell spheroids. Our in vitro data demonstrate that cardiac matrix-derived granular hydrogels support optimal viability of encapsulated cells and promote sprouting of human mesenchymal stem cell spheroids. Additionally, granular hydrogel derived from fibrin-enriched cardiac matrix accelerates angiogenic sprouting of embedded human mesenchymal stem cell spheroids. The results obtained from this study lay an important foundation for the future exploration of using cardiac matrix-derived granular hydrogels for cardiac cell therapy.
Collapse
Affiliation(s)
- Rubia Shaik
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jacob Brown
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Rabina Lamichhane
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yong Wang
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16801, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
6
|
Yoo S, Lee HJ. Spheroid-Hydrogel-Integrated Biomimetic System: A New Frontier in Advanced Three-Dimensional Cell Culture Technology. Cells Tissues Organs 2024; 214:128-147. [PMID: 39265553 PMCID: PMC11965833 DOI: 10.1159/000541416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Despite significant advances in three-dimensional (3D) cell culture technologies, creating accurate in vitro models that faithfully recapitulate complex in vivo environments remains a major challenge in biomedical research. Traditional culture methods often fail to simultaneously facilitate critical cell-cell and cell-extracellular matrix (ECM) interactions while providing control over mechanical and biochemical properties. SUMMARY This review introduces the spheroid-hydrogel-integrated biomimetic system (SHIBS), a groundbreaking approach that synergistically combines spheroid culture with tailored hydrogel technologies. SHIBS uniquely bridges the gap between traditional culture methods and physiological conditions by offering unprecedented control over both cellular interactions and environmental properties. We explore how SHIBS is revolutionizing fields ranging from drug discovery and disease modeling to regenerative medicine and basic biological research. The review discusses current challenges in SHIBS technology, including reproducibility, scalability, and high-resolution imaging, and outlines ongoing research addressing these issues. Furthermore, we envision the future evolution of SHIBS into more sophisticated organoid-hydrogel-integrated biomimetic systems and its integration with cutting-edge technologies such as microfluidics, 3D bioprinting, and artificial intelligence. KEY MESSAGES SHIBS represents a paradigm shift in 3D cell culture technology, offering a unique solution to recreate complex in vivo environments. Its potential to accelerate the development of personalized therapies across various biomedical fields is significant. While challenges persist, the ongoing advancements in SHIBS technology promise to overcome current limitations, paving the way for more accurate and reliable in vitro models. The future integration of SHIBS with emerging technologies may revolutionize biomimetic modeling, potentially reducing the need for animal testing and expediting drug discovery processes. This comprehensive review provides researchers and clinicians with a holistic understanding of SHIBS technology, its current capabilities, and its future prospects in advancing biomedical research and therapeutic innovations. BACKGROUND Despite significant advances in three-dimensional (3D) cell culture technologies, creating accurate in vitro models that faithfully recapitulate complex in vivo environments remains a major challenge in biomedical research. Traditional culture methods often fail to simultaneously facilitate critical cell-cell and cell-extracellular matrix (ECM) interactions while providing control over mechanical and biochemical properties. SUMMARY This review introduces the spheroid-hydrogel-integrated biomimetic system (SHIBS), a groundbreaking approach that synergistically combines spheroid culture with tailored hydrogel technologies. SHIBS uniquely bridges the gap between traditional culture methods and physiological conditions by offering unprecedented control over both cellular interactions and environmental properties. We explore how SHIBS is revolutionizing fields ranging from drug discovery and disease modeling to regenerative medicine and basic biological research. The review discusses current challenges in SHIBS technology, including reproducibility, scalability, and high-resolution imaging, and outlines ongoing research addressing these issues. Furthermore, we envision the future evolution of SHIBS into more sophisticated organoid-hydrogel-integrated biomimetic systems and its integration with cutting-edge technologies such as microfluidics, 3D bioprinting, and artificial intelligence. KEY MESSAGES SHIBS represents a paradigm shift in 3D cell culture technology, offering a unique solution to recreate complex in vivo environments. Its potential to accelerate the development of personalized therapies across various biomedical fields is significant. While challenges persist, the ongoing advancements in SHIBS technology promise to overcome current limitations, paving the way for more accurate and reliable in vitro models. The future integration of SHIBS with emerging technologies may revolutionize biomimetic modeling, potentially reducing the need for animal testing and expediting drug discovery processes. This comprehensive review provides researchers and clinicians with a holistic understanding of SHIBS technology, its current capabilities, and its future prospects in advancing biomedical research and therapeutic innovations.
Collapse
Affiliation(s)
- Seungyeop Yoo
- School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Republic of Korea
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
7
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
9
|
Saberian M, Safari Roudsari R, Haghshenas N, Rousta A, Alizadeh S. How the combination of alginate and chitosan can fabricate a hydrogel with favorable properties for wound healing. Heliyon 2024; 10:e32040. [PMID: 38912439 PMCID: PMC11192993 DOI: 10.1016/j.heliyon.2024.e32040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Wound management has always been a significant concern, particularly for men, and the search for effective wound dressings has led to the emergence of hydrogels as a promising solution. In recent years, hydrogels, with their unique properties, have gained considerable importance in wound management. Among the various types of hydrogels, those incorporating chitosan and alginate, two distinct chemical materials, have shown potential in accelerating wound healing. This review aims to discuss the desirable characteristics of an effective wound dressing, explore the alginate/chitosan-based hydrogels developed by different researchers, and analyze their effects on wound healing through in vitro and in vivo assessments. In vitro tests encompass a wide range of evaluations, including swelling capacity, degradation rate, porosity, Fourier Transform Infrared Spectroscopy, X-ray diffraction analysis, moisture vapor transmission rate, release studies, mechanical properties, microscopic observation, antibacterial properties, compatibility assessment, cell adhesion investigation, blood clotting capability, cell migration analysis, water contact angle determination, and structural stability. Furthermore, in vivo assessments encompass the examination of wound closure rate, modulation of gene expression, as well as histopathological and immunohistochemical studies.
Collapse
Affiliation(s)
- Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Raha Safari Roudsari
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Haghshenas
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rousta
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences. Tehran, Iran
| |
Collapse
|
10
|
Xu C, Cao JF, Pei Y, Kim Y, Moon H, Fan CQ, Liao MC, Wang XY, Yao F, Zhang YJ, Zhang SH, Zhang J, Li JZ, Kim JS, Ma L, Xie ZJ. Injectable hydrogel harnessing foreskin mesenchymal stem cell-derived extracellular vesicles for treatment of chronic diabetic skin wounds. J Control Release 2024; 370:339-353. [PMID: 38685383 DOI: 10.1016/j.jconrel.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Chronic skin wounds are a serious complication of diabetes with a high incidence rate, which can lead to disability or even death. Previous studies have shown that mesenchymal stem cells derived extracellular vesicles (EVs) have beneficial effects on wound healing. However, the human foreskin mesenchymal stem cell (FSMSCs)-derived extracellular vesicle (FM-EV) has not yet been isolated and characterized. Furthermore, the limited supply and short lifespan of EVs also hinder their practical use. In this study, we developed an injectable dual-physical cross-linking hydrogel (PSiW) with self-healing, adhesive, and antibacterial properties, using polyvinylpyrrolidone and silicotungstic acid to load FM-EV. The EVs were evenly distributed in the hydrogel and continuously released. In vivo and vitro tests demonstrated that the synergistic effect of EVs and hydrogel could significantly promote the repair of diabetic wounds by regulating macrophage polarization, promoting angiogenesis, and improving the microenvironment. Overall, the obtained EVs-loaded hydrogels developed in this work exhibited promising applicability for the repair of chronic skin wounds in diabetes patients.
Collapse
Affiliation(s)
- Chang Xu
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Jin-Feng Cao
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
| | - Yue Pei
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Yujin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Huiyeon Moon
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chui-Qin Fan
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Mao-Chuan Liao
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Xing-Yu Wang
- Department of Emergency, ChangYang Tujia Autonomous County People's Hospital, Yichang 443000, China
| | - Fei Yao
- Eye Center of Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yu-Jun Zhang
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Shao-Hui Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian-Zhang Li
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Lian Ma
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China; Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China; Department of Pediatrics, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Zhong-Jian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China; Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China.
| |
Collapse
|
11
|
Xie C, Liu G, Wang L, Yang Q, Liao F, Yang X, Xiao B, Duan L. Synthesis and Properties of Injectable Hydrogel for Tissue Filling. Pharmaceutics 2024; 16:430. [PMID: 38543325 PMCID: PMC10975320 DOI: 10.3390/pharmaceutics16030430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 01/06/2025] Open
Abstract
Hydrogels with injectability have emerged as the focal point in tissue filling, owing to their unique properties, such as minimal adverse effects, faster recovery, good results, and negligible disruption to daily activities. These hydrogels could attain their injectability through chemical covalent crosslinking, physical crosslinking, or biological crosslinking. These reactions allow for the formation of reversible bonds or delayed gelatinization, ensuring a minimally invasive approach for tissue filling. Injectable hydrogels facilitate tissue augmentation and tissue regeneration by offering slow degradation, mechanical support, and the modulation of biological functions in host cells. This review summarizes the recent advancements in synthetic strategies for injectable hydrogels and introduces their application in tissue filling. Ultimately, we discuss the prospects and prevailing challenges in developing optimal injectable hydrogels for tissue augmentation, aiming to chart a course for future investigations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China (F.L.); (X.Y.)
| | - Lian Duan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China (F.L.); (X.Y.)
| |
Collapse
|
12
|
He Y, Cen Y, Tian M. Immunomodulatory hydrogels for skin wound healing: cellular targets and design strategy. J Mater Chem B 2024; 12:2435-2458. [PMID: 38284157 DOI: 10.1039/d3tb02626d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Skin wounds significantly impact the global health care system and represent a significant burden on the economy and society due to their complicated dynamic healing processes, wherein a series of immune events are required to coordinate normal and sequential healing phases, involving multiple immunoregulatory cells such as neutrophils, macrophages, keratinocytes, and fibroblasts, since dysfunction of these cells may impede skin wound healing presenting persisting inflammation, impaired vascularization, and excessive collagen deposition. Therefore, cellular target-based immunomodulation is promising to promote wound healing as cells are the smallest unit of life in immune response. Recently, immunomodulatory hydrogels have become an attractive avenue to promote skin wound healing. However, a detailed and comprehensive review of cellular targets and related hydrogel design strategies remains lacking. In this review, the roles of the main immunoregulatory cells participating in skin wound healing are first discussed, and then we highlight the cellular targets and state-of-the-art design strategies for immunomodulatory hydrogels based on immunoregulatory cells that cover defect, infected, diabetic, burn and tumor wounds and related scar healing. Finally, we discuss the barriers that need to be addressed and future prospects to boost the development and prosperity of immunomodulatory hydrogels.
Collapse
Affiliation(s)
- Yinhai He
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Babaluei M, Mojarab Y, Mottaghitalab F, Saeb MR, Farokhi M. Conductive hydrogels based on tragacanth and silk fibroin containing dopamine functionalized carboxyl-capped aniline pentamer: Merging hemostasis, antibacterial, and anti-oxidant properties into a multifunctional hydrogel for burn wound healing. Int J Biol Macromol 2024; 261:129932. [PMID: 38309399 DOI: 10.1016/j.ijbiomac.2024.129932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Hydrogels possessing both conductive characteristics and notable antibacterial and antioxidant properties hold considerable significance within the realm of wound healing and recovery. The object of current study is the development of conductive hydrogels with antibacterial and antioxidant properties, emphasizing their potential for effective wound healing, especially in treating third-degree burns. For this purpose, various conductive hydrogels are developed based on tragacanth and silk fibroin, with variable dopamine functionalized carboxyl-capped aniline pentamer (CAP@DA). The FTIR analysis confirms that the CAP powder was successfully synthesized and modified with DA. The results show that the incorporation of CAP@DA into hydrogels can increase the porosity and swellability of the hydrogels. Additionally, the mechanical and viscoelastic properties of the hydrogels are also improved. The release of vancomycin from the hydrogels is sustained over time, and the hydrogels are effective in inhibiting the growth of Methicillin-resistant Staphylococcus aureus (MRSA). In vitro cell studies of the hydrogels show that all hydrogels are biocompatible and support cell attachment. The hydrogels' tissue adhesiveness yielded a satisfactory hemostatic outcome in a rat-liver injury model. The third-degree burn was created on the dorsal back paravertebral region of the rats and then grafted with hydrogels. The burn was monitored for 3, 7, and 14 days to evaluate the efficacy of the hydrogel in promoting wound healing. The hydrogels revealed treatment effect, resulting in enhancements in wound closure, dermal collagen matrix production, new blood formation, and anti-inflammatory properties. Better results were obtained for hydrogel with increasing CAP@DA. In summary, the multifunctional conducive hydrogel, featuring potent antibacterial properties, markedly facilitated the wound regeneration process.
Collapse
Affiliation(s)
| | - Yasamin Mojarab
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Technology, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Mahmoud M, Abdel-Rasheed M, Galal ER, El-Awady RR. Factors Defining Human Adipose Stem/Stromal Cell Immunomodulation in Vitro. Stem Cell Rev Rep 2024; 20:175-205. [PMID: 37962697 PMCID: PMC10799834 DOI: 10.1007/s12015-023-10654-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also discussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs to be carefully considered in further standardized research. Importantly, field experts' opinions may help to make it clearer.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Eman Reda Galal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
15
|
Li W, Hu J, Chen C, Li X, Zhang H, Xin Y, Tian Q, Wang S. Emerging advances in hydrogel-based therapeutic strategies for tissue regeneration. Regen Ther 2023; 24:459-471. [PMID: 37772128 PMCID: PMC10523184 DOI: 10.1016/j.reth.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Significant developments in cell therapy and biomaterial science have broadened the therapeutic landscape of tissue regeneration. Tissue damage is a complex biological process in which different types of cells play a specific role in repairing damaged tissues and growth factors strictly regulate the activity of these cells. Hydrogels have become promising biomaterials for tissue regeneration if appropriate materials are selected and the hydrogel properties are well-regulated. Importantly, they can be used as carriers for living cells and growth factors due to the high water-holding capacity, high permeability, and good biocompatibility of hydrogels. Cell-loaded hydrogels can play an essential role in treating damaged tissues and open new avenues for cell therapy. There is ample evidence substantiating the ability of hydrogels to facilitate the delivery of cells (stem cell, macrophage, chondrocyte, and osteoblast) and growth factors (bone morphogenetic protein, transforming growth factor, vascular endothelial growth factor and fibroblast growth factor). This paper reviewed the latest advances in hydrogels loaded with cells or growth factors to promote the reconstruction of tissues. Furthermore, we discussed the shortcomings of the application of hydrogels in tissue engineering to promote their further development.
Collapse
Affiliation(s)
- Wenqi Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jing Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xinyue Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Honghua Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yanru Xin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
16
|
Huai Q, Zhu C, Zhang X, Dai H, Li X, Wang H. Mesenchymal stromal/stem cells and their extracellular vesicles in liver diseases: insights on their immunomodulatory roles and clinical applications. Cell Biosci 2023; 13:162. [PMID: 37670393 PMCID: PMC10478279 DOI: 10.1186/s13578-023-01122-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Liver disease is a leading cause of mortality and morbidity that is rising globally. Liver dysfunctions are classified into acute and chronic diseases. Various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Up to now, liver transplantation could be the last resort for patients with end-stage liver disease. However, liver transplantation still faces unavoidable difficulties. Mesenchymal stromal/stem cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties can be effectively used for treating liver diseases but without the limitation that are associated with liver transplantation. In this review, we summarize and discuss recent advances in the characteristics of MSCs and the potential action mechanisms of MSCs-based cell therapies for liver diseases. We also draw attention to strategies to potentiate the therapeutic properties of MSCs through pre-treatments or gene modifications. Finally, we discuss progress toward clinical application of MSCs or their extracellular vesicles in liver diseases.
Collapse
Affiliation(s)
- Qian Huai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Cheng Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaolei Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
17
|
Sousa P, Lopes B, Sousa AC, Moreira A, Coelho A, Alvites R, Alves N, Geuna S, Maurício AC. Advancements and Insights in Exosome-Based Therapies for Wound Healing: A Comprehensive Systematic Review (2018-June 2023). Biomedicines 2023; 11:2099. [PMID: 37626596 PMCID: PMC10452374 DOI: 10.3390/biomedicines11082099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Exosomes have shown promising potential as a therapeutic approach for wound healing. Nevertheless, the translation from experimental studies to commercially available treatments is still lacking. To assess the current state of research in this field, a systematic review was performed involving studies conducted and published over the past five years. A PubMed search was performed for English-language, full-text available papers published from 2018 to June 2023, focusing on exosomes derived from mammalian sources and their application in wound healing, particularly those involving in vivo assays. Out of 531 results, 148 papers were selected for analysis. The findings revealed that exosome-based treatments improve wound healing by increasing angiogenesis, reepithelization, collagen deposition, and decreasing scar formation. Furthermore, there was significant variability in terms of cell sources and types, biomaterials, and administration routes under investigation, indicating the need for further research in this field. Additionally, a comparative examination encompassing diverse cellular origins, types, administration pathways, or biomaterials is imperative. Furthermore, the predominance of rodent-based animal models raises concerns, as there have been limited advancements towards more complex in vivo models and scale-up assays. These constraints underscore the substantial efforts that remain necessary before attaining commercially viable and extensively applicable therapeutic approaches using exosomes.
Collapse
Affiliation(s)
- Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal;
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Turin, Italy;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
18
|
Lee DH, Bhang SH. Development of Hetero-Cell Type Spheroids Via Core-Shell Strategy for Enhanced Wound Healing Effect of Human Adipose-Derived Stem Cells. Tissue Eng Regen Med 2023; 20:581-591. [PMID: 36708468 PMCID: PMC10313618 DOI: 10.1007/s13770-022-00512-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Stem cell-based therapies have been developed to treat various types of wounds. Human adipose-derived stem cells (hADSCs) are used to treat skin wounds owing to their outstanding angiogenic potential. Although recent studies have suggested that stem cell spheroids may help wound healing, their cell viability and retention rate in the wound area require improvement to enhance their therapeutic efficacy. METHODS We developed a core-shell structured spheroid with hADSCs in the core and human dermal fibroblasts (hDFs) in the outer part of the spheroid. The core-shell structure was formed by continuous centrifugation and spheroid incubation. After optimizing the method for inducing uniform-sized core-shell spheroids, cell viability, cell proliferation, migration, and therapeutic efficacy were evaluated and compared to those of conventional spheroids. RESULTS Cell proliferation, migration, and involucrin expression were evaluated in keratinocytes. Tubular assays in human umbilical vein endothelial cells were used to confirm the improved skin regeneration and angiogenic efficacy of core-shell spheroids. Core-shell spheroids exhibited exceptional cell viability under hypoxic cell culture conditions that mimicked the microenvironment of the wound area. CONCLUSION The improvement in retention rate, survival rate, and angiogenic growth factors secretion from core-shell spheroids may contribute to the increased therapeutic efficacy of stem cell treatment for skin wounds.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea.
| |
Collapse
|
19
|
Zarrintaj P, Seidi F, Youssefi Azarfam M, Khodadadi Yazdi M, Erfani A, Barani M, Chauhan NPS, Rabiee N, Kuang T, Kucinska-Lipka J, Saeb MR, Mozafari M. Biopolymer-based composites for tissue engineering applications: A basis for future opportunities. COMPOSITES PART B: ENGINEERING 2023; 258:110701. [DOI: 10.1016/j.compositesb.2023.110701] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
20
|
Yang X, Li Q, Liu W, Zong C, Wei L, Shi Y, Han Z. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment. Cell Mol Immunol 2023; 20:583-599. [PMID: 36823236 PMCID: PMC10229624 DOI: 10.1038/s41423-023-00983-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/29/2023] [Indexed: 02/25/2023] Open
Abstract
Hepatic fibrosis/cirrhosis is a significant health burden worldwide, resulting in liver failure or hepatocellular carcinoma (HCC) and accounting for many deaths each year. The pathogenesis of hepatic fibrosis/cirrhosis is very complex, which makes treatment challenging. Endogenous mesenchymal stromal cells (MSCs) have been shown to play pivotal roles in the pathogenesis of hepatic fibrosis. Paradoxically, exogenous MSCs have also been used in clinical trials for liver cirrhosis, and their effectiveness has been observed in most completed clinical trials. There are still many issues to be resolved to promote the use of MSCs in the clinic in the future. In this review, we will examine the controversial role of MSCs in the pathogenesis and treatment of hepatic fibrosis/cirrhosis. We also investigated the clinical trials involving MSCs in liver cirrhosis, summarized the parameters that need to be standardized, and discussed how to promote the use of MSCs from a clinical perspective.
Collapse
Affiliation(s)
- Xue Yang
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenting Liu
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China.
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Zhipeng Han
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
21
|
Tian B, Liu J, Guo S, Li A, Wan JB. Macromolecule-based hydrogels nanoarchitectonics with mesenchymal stem cells for regenerative medicine: A review. Int J Biol Macromol 2023:125161. [PMID: 37270118 DOI: 10.1016/j.ijbiomac.2023.125161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
The role of regenerative medicine in clinical therapies is becoming increasingly vital. Under specific conditions, mesenchymal stem cells (MSCs) are capable of differentiating into mesoblastema (i.e., adipocytes, chondrocytes, and osteocytes) and other embryonic lineages. Their application in regenerative medicine has attracted a great deal of interest among researchers. To maximize the potential applications of MSCs, materials science could provide natural extracellular matrices and provide an effective means to understand the various mechanisms of differentiation for the growth of MSCs. Pharmaceutical fields are represented among the research on biomaterials by macromolecule-based hydrogel nanoarchitectonics. Various biomaterials have been used to prepare hydrogels with their unique chemical and physical properties to provide a controlled microenvironment for the culture of MSCs, laying the groundwork for future practical applications in regenerative medicine. This article currently describes and summarizes the sources, characteristics, and clinical trials of MSCs. In addition, it describes the differentiation of MSCs in various macromolecule-based hydrogel nanoarchitectonics and highlights the preclinical studies of MSCs-loaded hydrogel materials in regenerative medicine conducted over the past few years. Finally, the challenges and prospects of MSC-loaded hydrogels are discussed, and the future development of macromolecule-based hydrogel nanoarchitectonics is outlined by comparing the current literature.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Aiqin Li
- Department of Day-care Unit, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
22
|
Luo J, Zhao X, Guo B, Han Y. Preparation, thermal response mechanisms and biomedical applications of thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv 2023; 20:641-672. [PMID: 37218585 DOI: 10.1080/17425247.2023.2217377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Drug treatment is one of the main ways of coping with disease today. For the disadvantages of drug management, thermosensitive hydrogel is used as a countermeasure, which can realize the simple sustained release of drugs and the controlled release of drugs in complex physiological environments. AREAS COVERED This paper talks about thermosensitive hydrogels that can be used as drug carriers. The common preparation materials, material forms, thermal response mechanisms, characteristics of thermosensitive hydrogels for drug release and main disease treatment applications are reviewed. EXPERT OPINION When thermosensitive hydrogels are used as drug loading and delivery platforms, desired drug release patterns and release profiles can be tailored by selecting raw materials, thermal response mechanisms, and material forms. The properties of hydrogels prepared from synthetic polymers will be more stable than natural polymers. Integrating multiple thermosensitive mechanisms or different kinds of thermosensitive mechanisms on the same hydrogel is expected to realize the spatiotemporal differential delivery of multiple drugs under temperature stimulation. The industrial transformation of thermosensitive hydrogels as drug delivery platforms needs to meet some important conditions.
Collapse
Affiliation(s)
- Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Li H, Li B, Lv D, Li W, Lu Y, Luo G. Biomaterials releasing drug responsively to promote wound healing via regulation of pathological microenvironment. Adv Drug Deliv Rev 2023; 196:114778. [PMID: 36931347 DOI: 10.1016/j.addr.2023.114778] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Wound healing is characterized by complex, orchestrated, spatiotemporal dynamic processes. Recent findings demonstrated suitable local microenvironments were necessities for wound healing. Wound microenvironments include various biological, biochemical and physical factors, which are produced and regulated by endogenous biomediators, exogenous drugs, and external environment. Successful drug delivery to wound is complicated, and need to overcome the destroyed blood supply, persistent inflammation and enzymes, spatiotemporal requirements of special supplements, and easy deactivation of drugs. Triggered by various factors from wound microenvironment itself or external elements, stimuli-responsive biomaterials have tremendous advantages of precise drug delivery and release. Here, we discuss recent advances of stimuli-responsive biomaterials to regulate local microenvironments during wound healing, emphasizing on the design and application of different biomaterials which respond to wound biological/biochemical microenvironments (ROS, pH, enzymes, glucose and glutathione), physical microenvironments (mechanical force, temperature, light, ultrasound, magnetic and electric field), and the combination modes. Moreover, several novel promising drug carriers (microbiota, metal-organic frameworks and microneedles) are also discussed.
Collapse
Affiliation(s)
- Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Buying Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dalun Lv
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu City, China; Beijing Jayyalife Biological Technology Company, Beijing, China
| | - Wenhong Li
- Beijing Jayyalife Biological Technology Company, Beijing, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
24
|
Otsuka H. Nanofabrication Technologies to Control Cell and Tissue Function in Three-Dimension. Gels 2023; 9:gels9030203. [PMID: 36975652 PMCID: PMC10048556 DOI: 10.3390/gels9030203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
In the 2000s, advances in cellular micropatterning using microfabrication contributed to the development of cell-based biosensors for the functional evaluation of newly synthesized drugs, resulting in a revolutionary evolution in drug screening. To this end, it is essential to utilize cell patterning to control the morphology of adherent cells and to understand contact and paracrine-mediated interactions between heterogeneous cells. This suggests that the regulation of the cellular environment by means of microfabricated synthetic surfaces is not only a valuable endeavor for basic research in biology and histology, but is also highly useful to engineer artificial cell scaffolds for tissue regeneration. This review particularly focuses on surface engineering techniques for the cellular micropatterning of three-dimensional (3D) spheroids. To establish cell microarrays, composed of a cell adhesive region surrounded by a cell non-adherent surface, it is quite important to control a protein-repellent surface in the micro-scale. Thus, this review is focused on the surface chemistries of the biologically inspired micropatterning of two-dimensional non-fouling characters. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single-cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., fibers and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. These important approaches to cell engineering result in their applications to tissue regeneration, where the cell-biomaterial composite is injected into diseased area. This approach allows the operating surgeon to implant the cell and polymer combinations with minimum invasiveness. The polymers utilized in hydrogels are structurally similar to components of the extracellular matrix in vivo, and are considered biocompatible. This review will provide an overview of the critical design to make hydrogels when used as cell scaffolds for tissue engineering. In addition, the new strategy of injectable hydrogel will be discussed as future directions.
Collapse
Affiliation(s)
- Hidenori Otsuka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
25
|
Yu Q, Sun H, Yue Z, Yu C, Jiang L, Dong X, Yao M, Shi M, Liang L, Wan Y, Zhang H, Yao F, Li J. Zwitterionic Polysaccharide-Based Hydrogel Dressing as a Stem Cell Carrier to Accelerate Burn Wound Healing. Adv Healthc Mater 2023; 12:e2202309. [PMID: 36447378 DOI: 10.1002/adhm.202202309] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Stem cell therapy integrated with hydrogels has shown promising potential in wound healing. However, the existing hydrogels usually cannot reach the desired therapeutic efficacy for burn wounds due to the inadaptability to wound shape and weak anti-infection ability. Moreover, it is difficult to improve the environment for the survival and function of stem cells under complicated wound microenvironments. In this study, an injectable and self-healing hydrogel (DSC), comprising sulfobetaine-derived dextran and carboxymethyl chitosan, is fabricated through a Schiff-base reaction. Meanwhile, the DSC hydrogel shows high nonfouling properties, including resistance to bacteria and nonspecific proteins; moreover, the prepared hydrogel can provide a biomimetic microenvironment for cell proliferation whilst maintaining the stemness of adipose-derived stem cells (ADSCs) regardless of complex microenvironments. In burnt murine animal models, the ADSCs-laden hydrogel can significantly accelerate wound healing rate and scarless skin tissue regeneration through multiple pathways. Specifically, the ADSCs-laden DSC hydrogel can avoid immune system recognition and activation and thus reduce the inflammatory response. Moreover, the ADSCs-laden DSC hydrogel can promote collagen deposition, angiogenesis, and enhance macrophage M2 polarization in the wound area. In summary, sulfobetaine-derived polysaccharide hydrogel can serve as a versatile platform for stem cell delivery to promote burn wound healing.
Collapse
Affiliation(s)
- Qingyu Yu
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhiwei Yue
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Chaojie Yu
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Lijie Jiang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Xiaoru Dong
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mengmeng Yao
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mingyue Shi
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Lei Liang
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yizao Wan
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Jiangxi Key Laboratory of Nanobiomaterials and Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Hong Zhang
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Fanglian Yao
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Junjie Li
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
26
|
Saravanou SF, Ioannidis K, Dimopoulos A, Paxinou A, Kounelaki F, Varsami SM, Tsitsilianis C, Papantoniou I, Pasparakis G. Dually crosslinked injectable alginate-based graft copolymer thermoresponsive hydrogels as 3D printing bioinks for cell spheroid growth and release. Carbohydr Polym 2023; 312:120790. [PMID: 37059530 DOI: 10.1016/j.carbpol.2023.120790] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
In this work a dual crosslinked network based on sodium alginate graft copolymer, bearing poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) P(NIPAM-co-NtBAM) side chains was developed and examined as a shear thinning soft gelating bioink. The copolymer was found to undergo a two-step gelation mechanism; in the first step a three-dimensional (3D) network is formed through ionic interactions between the negatively ionized carboxylic groups of the alginate backbone and the positive charges of Ca2+ divalent cations, according to the "egg-box" mechanism. The second gelation step occurs upon heating which triggers the hydrophobic association of the thermoresponsive P(NIPAM-co-NtBAM) side chains, increasing the network crosslinking density in a highly cooperative manner. Interestingly, the dual crosslinking mechanism resulted in a five-to-eight-fold improvement of the storage modulus implying reinforced hydrophobic crosslinking above the critical thermo-gelation temperature which is further boosted by the ionic crosslinking of the alginate backbone. The proposed bioink could form arbitrary geometries under mild 3D printing conditions. Last, it is demonstrated that the proposed developed bioink can be further utilized as bioprinting ink and showcased its ability to promote human periosteum derived cells (hPDCs) growth in 3D and their capacity to form 3D spheroids. In conclusion, the bioink, owing its ability to reverse thermally the crosslinking of its polymer network, can be further utilized for the facile recovery of the cell spheroids, implying its promising potential use as cell spheroid-forming template bionk for applications in 3D biofabrication.
Collapse
|
27
|
Liu JL, Kang DL, Mi P, Xu CZ, Zhu L, Wei BM. Mesenchymal Stem Cell Derived Extracellular Vesicles: Promising Nanomedicine for Cutaneous Wound Treatment. ACS Biomater Sci Eng 2023; 9:531-541. [PMID: 36607315 DOI: 10.1021/acsbiomaterials.2c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A skin wound represents a rupture caused by external damage or the existence of underlying pathological conditions. Sometimes, skin wound healing processes may place a heavy burden on patients, families, and society. Wound healing processes mainly consist of several continuous, dynamic, but overlapping stages, namely, the coagulation stage, inflammation stage, proliferation stage, and remodeling stage. Bacterial infection, excessive inflammation, impaired angiogenesis, and scar formation constitute the four significant factors impeding the recovery efficacy of skin wounds. This encourages scientists to develop multifunctional nanomedicines to meet challenging needs. As we know, mesenchymal stem cells (MSCs) have been widely explored for wound repair owing to their unique capability for self-renewal and multipotency. However, problems including immune concerns and legal restrictions should be properly resolved before MSC-based therapeutics are safely and widely used in clinics. Besides, maintaining the high viability/proliferation capability of MSCs during administration processes and therapy procedures is also one of the biggest technical bottlenecks. Extracellular vesicles (EVs) are cell-derived nanovesicles, that not only possess the basic characteristics and functions of their corresponding maternal cells but also contain several outstanding advantages including abundant sources, excellent biocompatibility, and convenient administration routes. Furthermore, the membrane surface and cavity are easy to flexibly modify to meet versatile application needs. Recently, MSC-derived EVs have emerged as promising therapeutics for skin wound repair. However, current reviews are too broad and rarely focused on the specific roles of EVs in the different stages of wound recovery. Therefore, it is quite necessary to demonstrate the significance of stem cell-derived EVs in promoting wound healing from several specific aspects. Here, this review primarily tries to provide critical comments on current advances in EVs derived from MSCs for wound repair, particularly elaborating on their impressive roles in effectively eliminating infections, inhibiting inflammation, promoting angiogenesis, and reducing scar formation. Last but not least, current limitations and future prospects of EVs derived from MSCs in the areas of wound repair are also objectively analyzed.
Collapse
Affiliation(s)
- Jia-Lin Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - De-Lai Kang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Peng Mi
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Cheng-Zhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Ben-Mei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| |
Collapse
|
28
|
Duan C, Yu M, Hu C, Xia H, Kankala RK. Polymeric microcarriers for minimally-invasive cell delivery. Front Bioeng Biotechnol 2023; 11:1076179. [PMID: 36777246 PMCID: PMC9908582 DOI: 10.3389/fbioe.2023.1076179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Tissue engineering (TE) aims at restoring tissue defects by applying the three-dimensional (3D) biomimetic pre-formed scaffolds to restore, maintain, and enhance tissue growth. Broadly speaking, this approach has created a potential impact in anticipating organ-building, which could reduce the need for organ replacement therapy. However, the implantation of such cell-laden biomimetic constructs based on substantial open surgeries often results in severe inflammatory reactions at the incision site, leading to the generation of a harsh adverse environment where cell survival is low. To overcome such limitations, micro-sized injectable modularized units based on various biofabrication approaches as ideal delivery vehicles for cells and various growth factors have garnered compelling interest owing to their minimally-invasive nature, ease of packing cells, and improved cell retention efficacy. Several advancements have been made in fabricating various 3D biomimetic microscale carriers for cell delivery applications. In this review, we explicitly discuss the progress of the microscale cell carriers that potentially pushed the borders of TE, highlighting their design, ability to deliver cells and substantial tissue growth in situ and in vivo from different viewpoints of materials chemistry and biology. Finally, we summarize the perspectives highlighting current challenges and expanding opportunities of these innovative carriers.
Collapse
Affiliation(s)
- Chunyan Duan
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China,*Correspondence: Ranjith Kumar Kankala, ; Chunyan Duan,
| | - Mingjia Yu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China
| | - Changji Hu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China
| | - Hongying Xia
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Ranjith Kumar Kankala
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China,*Correspondence: Ranjith Kumar Kankala, ; Chunyan Duan,
| |
Collapse
|
29
|
Kuroda A, Mineo A, Shoji S, Inoue G, Saito W, Sekiguchi H, Takaso M, Uchida K. Effect of spheroid size on gene expression profiles of a mouse mesenchymal stem cell line in spheroid culture. Biomed Mater Eng 2023; 34:67-76. [PMID: 35694914 DOI: 10.3233/bme-221406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapies offer potential for bone repair. MSC spheroid cultures may harbor enhanced therapeutic potential over MSC monolayers through increased secretion of trophic factors. However, the impact of spheroid size on trophic factor expression is unclear. OBJECTIVE We investigated the effect of spheroid size on trophic factor-related gene expression. METHODS KUM10, a murine MSC line was used. RNA-seq was used to screen the transcriptional profiles of MSC monolayer and spheroid cultures. Differentially expressed genes identified in RNA-seq were evaluated by q-PCR in cultures of 5 × 104 (S group), 5 × 105 (M group), 5 × 106 (L group) cells/well. RESULTS Comparison of expression levels between KUM10 monolayer and spheroid cultures identified 2140 differentially expressed genes, of which 1047 were upregulated and 1093 were downregulated in KUM10 spheroids. Among these, 12 upregulated genes (Bmp2, Fgf9, Fgf18, Ngf, Pdgfa, Pdgfb, Tgfb1, Vegfa, Vegfc, Wnt4, Wnt5a, Wnt10a) were associated with secretory growth factors. Of these, expression of Fgf9, Fgf18, Vegfa and Vegfc was elevated in the L group, and Pdgfb and Tgfb1 was elevated in the S group. CONCLUSIONS Spheroid size may impact trophic factor expression. Our results will be useful for future studies assessing the utility of MSC spheroids for treating bone injury.
Collapse
Affiliation(s)
- Akiyoshi Kuroda
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Minami ku, Kitasato, Sagamihara, Kanagawa, Japan
| | - Ayumi Mineo
- Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Shintaro Shoji
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Minami ku, Kitasato, Sagamihara, Kanagawa, Japan
| | - Gen Inoue
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Minami ku, Kitasato, Sagamihara, Kanagawa, Japan
| | - Wataru Saito
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Minami ku, Kitasato, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Sekiguchi
- Shonan University of Medical Sciences Research Institute, Chigasaki, Kanagawa, Japan
| | - Masashi Takaso
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Minami ku, Kitasato, Sagamihara, Kanagawa, Japan
| | - Kentaro Uchida
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Minami ku, Kitasato, Sagamihara, Kanagawa, Japan.,Shonan University of Medical Sciences Research Institute, Chigasaki, Kanagawa, Japan
| |
Collapse
|
30
|
Pretreated Mesenchymal Stem Cells and Their Secretome: Enhanced Immunotherapeutic Strategies. Int J Mol Sci 2023; 24:ijms24021277. [PMID: 36674790 PMCID: PMC9864323 DOI: 10.3390/ijms24021277] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) with self-renewing, multilineage differentiation and immunomodulatory properties, have been extensively studied in the field of regenerative medicine and proved to have significant therapeutic potential in many different pathological conditions. The role of MSCs mainly depends on their paracrine components, namely secretome. However, the components of MSC-derived secretome are not constant and are affected by the stimulation MSCs are exposed to. Therefore, the content and composition of secretome can be regulated by the pretreatment of MSCs. We summarize the effects of different pretreatments on MSCs and their secretome, focusing on their immunomodulatory properties, in order to provide new insights for the therapeutic application of MSCs and their secretome in inflammatory immune diseases.
Collapse
|
31
|
Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater 2023; 19:50-74. [PMID: 35441116 PMCID: PMC8987319 DOI: 10.1016/j.bioactmat.2022.03.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) stem cell culture systems have attracted considerable attention as a way to better mimic the complex interactions between individual cells and the extracellular matrix (ECM) that occur in vivo. Moreover, 3D cell culture systems have unique properties that help guide specific functions, growth, and processes of stem cells (e.g., embryogenesis, morphogenesis, and organogenesis). Thus, 3D stem cell culture systems that mimic in vivo environments enable basic research about various tissues and organs. In this review, we focus on the advanced therapeutic applications of stem cell-based 3D culture systems generated using different engineering techniques. Specifically, we summarize the historical advancements of 3D cell culture systems and discuss the therapeutic applications of stem cell-based spheroids and organoids, including engineering techniques for tissue repair and regeneration.
Collapse
Affiliation(s)
- Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoseong Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
32
|
Biopolymer-Based Wound Dressings with Biochemical Cues for Cell-Instructive Wound Repair. Polymers (Basel) 2022; 14:polym14245371. [PMID: 36559739 PMCID: PMC9783382 DOI: 10.3390/polym14245371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine is an active research sphere that focuses on the repair, regeneration, and replacement of damaged tissues and organs. A plethora of innovative wound dressings and skin substitutes have been developed to treat cutaneous wounds and are aimed at reducing the length or need for a hospital stay. The inception of biomaterials with the ability to interact with cells and direct them toward desired lineages has brought about innovative designs in wound healing and tissue engineering. This cellular engagement is achieved by cell cues that can be biochemical or biophysical in nature. In effect, these cues seep into innate repair pathways, cause downstream cell behaviours and, ultimately, lead to advantageous healing. This review will focus on biomolecules with encoded biomimetic, instructive prompts that elicit desired cellular domino effects to achieve advanced wound repair. The wound healing dressings covered in this review are based on functionalized biopolymeric materials. While both biophysical and biochemical cues are vital for advanced wound healing applications, focus will be placed on biochemical cues and in vivo or clinical trial applications. The biochemical cues aforementioned will include peptide therapy, collagen matrices, cell-based therapy, decellularized matrices, platelet-rich plasma, and biometals.
Collapse
|
33
|
Farokhi M, Mottaghitalab F, Babaluei M, Mojarab Y, Kundu SC. Advanced Multifunctional Wound Dressing Hydrogels as Drug Carriers. Macromol Biosci 2022; 22:e2200111. [PMID: 35866647 DOI: 10.1002/mabi.202200111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/25/2022] [Indexed: 01/15/2023]
Abstract
Skin injuries, especially chronic wounds, remain a significant healthcare system problem. The number of burns, diabetic patients, pressure ulcers, and other damages is also growing, particularly in elderly populations. Several investigations are pursued in designing more effective therapeutics for treating different wound injuries. These efforts have resulted in developing multifunctional wound dressings to improve wound repair. For this, preparing multifunctional dressings using various methods has provided a new attitude to support effective skin regeneration. This review focuses on the recent developments in designing multifunctional hydrogel dressings with hemostasis, adhesiveness, antibacterial, and antioxidant properties.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mercedeh Babaluei
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Yasamin Mojarab
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
| |
Collapse
|
34
|
Yazdi MK, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic C.D. M, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review. Prog Polym Sci 2022; 133:101590. [PMID: 37779922 PMCID: PMC10540641 DOI: 10.1016/j.progpolymsci.2022.101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, 624, KRG, Iraq
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Midhun Dominic C.D.
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
35
|
Shokrani H, Shokrani A, Sajadi SM, Khodadadi Yazdi M, Seidi F, Jouyandeh M, Zarrintaj P, Kar S, Kim SJ, Kuang T, Rabiee N, Hejna A, Saeb MR, Ramakrishna S. Polysaccharide-based nanocomposites for biomedical applications: a critical review. NANOSCALE HORIZONS 2022; 7:1136-1160. [PMID: 35881463 DOI: 10.1039/d2nh00214k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polysaccharides (PSA) have taken specific position among biomaterials for advanced applications in medicine. Nevertheless, poor mechanical properties are known as the main drawback of PSA, which highlights the need for PSA modification. Nanocomposites PSA (NPSA) are a class of biomaterials widely used as biomedical platforms, but despite their importance and worldwide use, they have not been reviewed. Herein, we critically reviewed the application of NPSA by categorizing them into generic and advanced application realms. First, the application of NPSA as drug and gene delivery systems, along with their role in the field as an antibacterial platform and hemostasis agent is discussed. Then, applications of NPSA for skin, bone, nerve, and cartilage tissue engineering are highlighted, followed by cell encapsulation and more critically cancer diagnosis and treatment potentials. In particular, three features of investigations are devoted to cancer therapy, i.e., radiotherapy, immunotherapy, and photothermal therapy, are comprehensively reviewed and discussed. Since this field is at an early stage of maturity, some other aspects such as bioimaging and biosensing are reviewed in order to give an idea of potential applications of NPSA for future developments, providing support for clinical applications. It is well-documented that using nanoparticles/nanomaterials above a critical concentration brings about concerns of toxicity; thus, their effect on cellular interactions would become critical. We compared nanoparticles used in the fabrication of NPSA in terms of toxicity mechanism to shed more light on future challenging aspects of NPSA development. Indeed, the neutralization mechanisms underlying the cytotoxicity of nanomaterials, which are expected to be induced by PSA introduction, should be taken into account for future investigations.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Alexander Hejna
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University Singapore, 10 Kent Ridge, Crescent 119260, Singapore.
| |
Collapse
|
36
|
Zhou L, Min T, Bian X, Dong Y, Zhang P, Wen Y. Rational Design of Intelligent and Multifunctional Dressing to Promote Acute/Chronic Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:4055-4085. [PMID: 35980356 DOI: 10.1021/acsabm.2c00500] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently, the clinic's treatment of acute/chronic wounds is still unsatisfactory due to the lack of functional and appropriate wound dressings. Intelligent and multifunctional dressings are considered the most advanced wound treatment modalities. It is essential to design and develop wound dressings with required functions according to the wound microenvironment in the clinical treatment. This work summarizes microenvironment characteristics of various common wounds, such as acute wound, diabetic wound, burns wound, scalded wound, mucosal wound, and ulcers wound. Furthermore, the factors of transformation from acute wounds to chronic wounds were analyzed. Then we focused on summarizing how researchers fully and thoroughly combined the complex microenvironment with modern advanced technology to ensure the usability and value of the dressing, such as photothermal-sensitive dressings, microenvironment dressing (pH-sensitive dressings, ROS-sensitive dressings, and osmotic pressure dressings), hemostatic dressing, guiding tissue regeneration dressing, microneedle dressings, and 3D/4D printing dressings. Finally, the revolutionary development of wound dressings and how to transform the existing advanced functional dressings into clinical needs as soon as possible have carried out a reasonable and meaningful outlook.
Collapse
Affiliation(s)
- Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Orthopaedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Tiantian Min
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
37
|
Al-Bishari AM, Al-Shaaobi BA, Al-Bishari AA, Al-Baadani MA, Yu L, Shen J, Cai L, Shen Y, Deng Z, Gao P. Vitamin D and curcumin-loaded PCL nanofibrous for engineering osteogenesis and immunomodulatory scaffold. Front Bioeng Biotechnol 2022; 10:975431. [PMID: 36003534 PMCID: PMC9393239 DOI: 10.3389/fbioe.2022.975431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 12/23/2022] Open
Abstract
The accelerating bone healing process is still a major challenge in clinical orthopedics, especially in critical-sized bone defects. Recently, Nanofiber membranes are showing increasing attention in the biomedical field due to their good biocompatibility, mechanical stability, and the ability to work as a drug carrier to achieve localized and sustained drug delivery. Herein, a multifunction nanofiber membrane loaded with vitamin D (Vit D) and curcumin (Cur) was successfully fabricated using electrospinning technology. In addition, we innovatively modified Vit D with PEG to improve the hydrophilicity of PCL nanofibers. The vitro results of CCK-8, alkaline phosphatase (ALP) and mineralization demonstrated that the PCL/Vit D-Cur membrane had great potential for enhancing the proliferation/differentiation of osteoblasts. Moreover, the synergistic effect of Vit D-Cur loaded PCL nanofiber membrane showed a superior ability to improve the anti-inflammatory activity through M2 polarization. Furthermore, in vivo results confirmed that the defect treated with PCL/Vit D-Cur nanofiber membrane was filled with the newly formed bone after 1 month. These results indicate that the Vit D/Cur loaded membrane can be applied for potential bone regeneration therapy.
Collapse
Affiliation(s)
| | - Bilal A. Al-Shaaobi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | | | | | - Liang Yu
- School Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiating Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lei Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yiding Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhennan Deng, ; Peng Gao,
| | - Peng Gao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhennan Deng, ; Peng Gao,
| |
Collapse
|
38
|
Carayon I, Szarlej P, Gnatowski P, Piłat E, Sienkiewicz M, Glinka M, Karczewski J, Kucińska-Lipka J. Polyurethane based hybrid ciprofloxacin-releasing wound dressings designed for skin engineering purpose. Adv Med Sci 2022; 67:269-282. [PMID: 35841880 DOI: 10.1016/j.advms.2022.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Even in the 21st century, chronic wounds still pose a major challenge due to potentially inappropriate treatment options, so the latest wound dressings are hybrid systems that enable clinical management, such as a hybrid of hydrogels, antibiotics and polymers. These wound dressings are mainly used for chronic and complex wounds, which can easily be infected by bacteria. MATERIALS AND METHODS Six Composite Porous Matrices (CPMs) based on polyurethane (PUR) in alliance with polylactide (PLAs) and poly(vinyl alcohol) (PVA) were prepared and analyzed using optical microscopy. Three different types of hydrogels and their Ciprofloxacin (Cipro) modified variants' ratios were prepared and analyzed using FTIR, SEM and EDX techniques. Six Hybrid Cipro-Releasing Hydrogel Wound Dressings (H-CRWDs) were also prepared and underwent short-term degradation, Cipro release, microbiology and cell viability measurements. RESULTS Average porosity of CPMs was in the range of 69-81%. The pore size of the obtained CPMs was optimal for skin regeneration. Short-term degradation studies revealed degradability in physiological conditions regardless of sample type. A meaningful release was also observed even in short time (21.76 ± 0.64 μg/mL after 15 min). Microbiological tests showed visible inhibition zones. Cell viability tests proved that the obtained H-CRWDs were biocompatible (over 85% of cells). CONCLUSIONS A promising hybrid wound dressing was labeled. Simple and cost-effective methods were used to obtain microbiologically active and biocompatible dressings. The results were of importance for the design and development of acceptable solutions in the management of chronic wounds of high potential for infection.
Collapse
Affiliation(s)
- Iga Carayon
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Paweł Szarlej
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Przemysław Gnatowski
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Edyta Piłat
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Maciej Sienkiewicz
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Marta Glinka
- Department of Analytical Chemistry, Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jakub Karczewski
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gdansk, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
39
|
Islam S, Parker J, Dash BC, Hsia HC. Human iPSC-Vascular smooth muscle cell spheroids demonstrate size-dependent alterations in cellular viability and secretory function. J Biomed Mater Res A 2022; 110:1813-1823. [PMID: 35815599 DOI: 10.1002/jbm.a.37423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
Human-induced pluripotent stem cells (hiPSC) and their differentiated vascular cells have been revolutionizing the field of regenerative wound healing. These cells are shown to be rejuvenated with immense potentials in secreting paracrine factors. Recently, hiPSC-derived vascular smooth muscle cells (hiPSC-VSMC) have shown regenerative wound healing ability via their paracrine secretion. The quest to modulate the secretory function of these hiPSC-VSMC is an ongoing effort and involves the use of both biochemical and biophysical stimuli. This study explores the development and optimization of a reproducible, inexpensive protocol to form hiPSC-VSMC derived spheroids to investigate the implications of spheroid size on viability and paracrine secretion. Our data show the successful formation of different sizes of spheroids using various amount of hiPSC-VSMC. The hiPSC-VSMC spheroids formed with 10,000 cells strike an ideal balance between overall cell health and maximal paracrine secretion. The conditioned medium from these spheroids was found to be bioactive in enhancing human dermal fibroblast cell proliferation and migration. This research will inform future studies on the optimal spheroid size for regenerative wound healing applications.
Collapse
Affiliation(s)
- Sara Islam
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Jackson Parker
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Biraja C Dash
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Henry C Hsia
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
40
|
Zhao Y, Liu X, Peng X, Zheng Y, Cheng Z, Sun S, Ding Q, Liu W, Ding C. A poloxamer/hyaluronic acid/chitosan-based thermosensitive hydrogel that releases dihydromyricetin to promote wound healing. Int J Biol Macromol 2022; 216:475-486. [PMID: 35810849 DOI: 10.1016/j.ijbiomac.2022.06.210] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Wounds caused by accidents and surgery are inevitable, and inflammation and microbial infection during the healing process are serious clinical challenges, resulting in slow wound healing. In this study, we created a 37 °C-sensitive hydrogel using poloxamer, chitosan and hyaluronic acid, loaded with the active substance dihydromyricetin, and further evaluated its potential for wound healing. The hydrogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis for their micromorphological structure, characteristic functional groups, crystal structure and thermal stability, and in vitro drug release assays showed that the hydrogel could slowly release dihydromyricetin. In addition, the hydrogels were found to exhibit good biocompatibility and significant in vitro antioxidant and anti-inflammatory activity according to hemolysis, in vitro antioxidant and anti-inflammatory tests. Methyl thiazolyl tetrazole cytotoxicity tests verified that the film was non-toxic to human keratinocyte (HaCaT) cells, while in vivo experiments showed that this hydrogel could promote skin repair by promoting skin-associated growth factor expression and inhibiting nuclear factor kappa B-mediated cellular inflammatory factors. These results demonstrated that the temperature-sensitive hydrogels loaded with dihydromyricetin could serve as potential candidates for guided skin repair.
Collapse
Affiliation(s)
- Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaojuan Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yinan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China.
| | - Chuanbo Ding
- School of Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China.
| |
Collapse
|
41
|
Yazdi MK, Zare M, Khodadadi A, Seidi F, Sajadi SM, Zarrintaj P, Arefi A, Saeb MR, Mozafari M. Polydopamine Biomaterials for Skin Regeneration. ACS Biomater Sci Eng 2022; 8:2196-2219. [PMID: 35649119 DOI: 10.1021/acsbiomaterials.1c01436] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Designing biomaterials capable of biomimicking wound healing and skin regeneration has been receiving increasing attention recently. Some biopolymers behave similarly to the extracellular matrix (ECM), supporting biointerfacial adhesion and intrinsic cellular interactions. Polydopamine (PDA) is a natural bioadhesive and bioactive polymer that endows high chemical versatility, making it an exciting candidate for a wide range of biomedical applications. Moreover, biomaterials based on PDA and its derivatives have near-infrared (NIR) absorption, excellent biocompatibility, intrinsic antioxidative activity, antibacterial activity, and cell affinity. PDA can regulate cell behavior by controlling signal transduction pathways. It governs the focal adhesion behavior of cells at the biomaterials interface. These features make melanin-like PDA a fascinating biomaterial for wound healing and skin regeneration. This paper overviews PDA-based biomaterials' synthesis, properties, and interactions with biological entities. Furthermore, the utilization of PDA nano- and microstructures as a constituent of wound-dressing formulations is highlighted.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran 141663-4793, Iran
| | - Ali Khodadadi
- Department of Internal Medicine, School of Medicine, Gonabad University of Medical Sciences, Gonabad 96914, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University─Erbil, Erbil, Kurdistan Region 44001, Iraq.,Department of Phytochemistry, SRC, Soran University, Soran, Kurdistan Regional Government 44008, Iraq
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Ahmad Arefi
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences,Tehran 144961-4535, Iran
| |
Collapse
|
42
|
Exploring Silk Sericin for Diabetic Wounds: An In Situ-Forming Hydrogel to Protect against Oxidative Stress and Improve Tissue Healing and Regeneration. Biomolecules 2022; 12:biom12060801. [PMID: 35740928 PMCID: PMC9221298 DOI: 10.3390/biom12060801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic wounds are one of the most frequent complications that are associated with diabetes mellitus. The overproduction of reactive oxygen species (ROS) is a key factor in the delayed healing of a chronic wound. In the present work, we develop a novel in situ-forming silk sericin-based hydrogel (SSH) that is produced by a simple methodology using horseradish peroxidase (HRP) crosslinking as an advanced dressing for wound healing. The antioxidant and angiogenic effects were assessed in vitro and in vivo after in situ application using an excisional wound-healing model in a genetically-induced diabetic db/db mice and though the chick embryo choriollantoic membrane (CAM) assay, respectively. Wounds in diabetic db/db mice that were treated with SSH closed with reduced granulation tissue, decreased wound edge distance, and wound thickness, when compared to Tegaderm, a dressing that is commonly used in the clinic. The hydrogel also promoted a deposition of collagen fibers with smaller diameter which may have had a boost effect in re-epithelialization. SSH treatment slightly induced two important endogenous antioxidant defenses, superoxide dismutase and catalase. A CAM assay made it possible to observe that SSH led to an increase in the number of newly formed vessels without inducing an inflammatory reaction. The present hydrogel may result in a multi-purpose technology with angiogenic, antioxidant, and anti-inflammatory properties, while advancing efficient and organized tissue regeneration.
Collapse
|
43
|
Wu X, Zhang Q, Wang Z, Xu Y, Tao Q, Wang J, Kong X, Sheng K, Wang Y. Investigation of construction and characterization of carboxymethyl chitosan - sodium alginate nanoparticles to stabilize Pickering emulsion hydrogels for curcumin encapsulation and accelerating wound healing. Int J Biol Macromol 2022; 209:1837-1847. [PMID: 35489626 DOI: 10.1016/j.ijbiomac.2022.04.157] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/05/2023]
Abstract
Limitations in compatibility and effectiveness in delivering bioactive compounds often make it prohibitively difficult to apply Pickering emulsions in wound dressing. In this research, we prepared Pickering emulsion composite hydrogels based on carboxymethyl chitosan - sodium alginate (CMCS-SA) nanoparticles (NPs) stabilized Pickering emulsions, poloxamer 407 (PLX), and curcumin (CUR). CMCS-SA NPs were prepared and used to stabilize Pickering emulsion. The stability of Pickering emulsion improved with the increase of the concentration of NPs, and was highly sensitive to ionic strength change. This Pickering emulsion remained stable at various temperatures. After curcumin were introduced into the emulsion, 0.6% CMCS-SA NPs Pickering emulsion showed controlled release of curcumin in vitro. The CMCS-SA-PLX-CUR hydrogels also exhibited smooth surface and dense structure. This composite hydrogels has antibacterial properties against Escherichia coli and Staphylococcus aureus. Moreover, the CMCS-SA-PLX-CUR hydrogels improved wound healing and increased expression of Ki67 and CD31. RT-qPCR results indicated that the mRNA levels of α-SMA and TGF-β1 in the CMCS-SA-PLX-CUR group were downregulated, while the mRNA levels of TGF-β3 increased. The present study suggests that the potentials of CMCS-SA-PLX-CUR hydrogels are promising in protecting bioactive components and wound care management.
Collapse
Affiliation(s)
- Xinru Wu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Qingao Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Zeming Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Yifan Xu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Qiuru Tao
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Xiaowei Kong
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China.
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
44
|
Shokrani H, Shokrani A, Sajadi SM, Seidi F, Mashhadzadeh AH, Rabiee N, Saeb MR, Aminabhavi T, Webster TJ. Cell-Seeded Biomaterial Scaffolds: The Urgent Need for Unanswered Accelerated Angiogenesis. Int J Nanomedicine 2022; 17:1035-1068. [PMID: 35309965 PMCID: PMC8927652 DOI: 10.2147/ijn.s353062] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
One of the most arduous challenges in tissue engineering is neovascularization, without which there is a lack of nutrients delivered to a target tissue. Angiogenesis should be completed at an optimal density and within an appropriate period of time to prevent cell necrosis. Failure to meet this challenge brings about poor functionality for the tissue in comparison with the native tissue, extensively reducing cell viability. Prior studies devoted to angiogenesis have provided researchers with some biomaterial scaffolds and cell choices for angiogenesis. For example, while most current angiogenesis approaches require a variety of stimulatory factors ranging from biomechanical to biomolecular to cellular, some other promising stimulatory factors have been underdeveloped (such as electrical, topographical, and magnetic). When it comes to choosing biomaterial scaffolds in tissue engineering for angiogenesis, key traits rush to mind including biocompatibility, appropriate physical and mechanical properties (adhesion strength, shear stress, and malleability), as well as identifying the appropriate biomaterial in terms of stability and degradation profile, all of which may leave essential trace materials behind adversely influencing angiogenesis. Nevertheless, the selection of the best biomaterial and cells still remains an area of hot dispute as such previous studies have not sufficiently classified, integrated, or compared approaches. To address the aforementioned need, this review article summarizes a variety of natural and synthetic scaffolds including hydrogels that support angiogenesis. Furthermore, we review a variety of cell sources utilized for cell seeding and influential factors used for angiogenesis with a concentrated focus on biomechanical factors, with unique stimulatory factors. Lastly, we provide a bottom-to-up overview of angiogenic biomaterials and cell selection, highlighting parameters that need to be addressed in future studies.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Erbil, 625, Iraq
- Department of Phytochemistry, SRC, Soran University, Soran, KRG, 624, Iraq
- Correspondence: S Mohammad Sajadi; Navid Rabiee, Email ; ;
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, Iran
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Tejraj Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India
- Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University, Tianjin, People’s Republic of China
- Center for Biomaterials, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
45
|
Liu G, ZHOU YUAN, Zhang X, Guo S. Advances in Hydrogels for Stem Cell Therapy: Regulation Mechanisms and Tissue Engineering Applications. J Mater Chem B 2022; 10:5520-5536. [DOI: 10.1039/d2tb01044e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stem cell therapy has shown unparalleled potential in tissue engineering, but it still faces challenges in the regulation of stem cell fate. Inspired by the native stem cell niche, a...
Collapse
|
46
|
Jeong G, Im G, Lee T, Kim S, Jeon HR, Lee D, Baik S, Pang C, Kim T, Kim D, Jang YC, Bhang SH. Development of a stem cell spheroid‐laden patch with high retention at skin wound site. Bioeng Transl Med 2021; 7:e10279. [PMID: 35600658 PMCID: PMC9115685 DOI: 10.1002/btm2.10279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 11/08/2022] Open
Abstract
Mesenchymal stem cells such as human adipose tissue‐derived stem cells (hADSCs) have been used as a representative therapeutic agent for tissue regeneration because of their high proliferation and paracrine factor‐secreting abilities. However, certain points regarding conventional ADSC delivery systems, such as low cell density, secreted cytokine levels, and cell viability, still need to be addressed for treating severe wounds. In this study, we developed a three‐dimensional (3D) cavity‐structured stem cell‐laden system for overdense delivery of cells into severe wound sites. Our system includes a hydrophobic surface and cavities that can enhance the efficiency of cell delivery to the wound site. In particular, the cavities in the system facilitate hADSC spheroid formation, increasing therapeutic growth factor expression compared with 2D cultured cells. Our hADSC spheroid‐loaded patch exhibited remarkably improved cell localization at the wound site and dramatic therapeutic efficacy compared to the conventional cell injection method. Taken together, the hADSC spheroid delivery system focused on cell delivery, and stem cell homing effect at the wound site showed a significantly enhanced wound healing effect. By overcoming the limitations of conventional cell delivery methods, our overdense cell delivery system can contribute to biomedical and clinical applications.
Collapse
Affiliation(s)
- Gun‐Jae Jeong
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Gwang‐Bum Im
- School of Chemical Engineering Sungkyunkwan University Suwon South Korea
| | - Tae‐Jin Lee
- Department of Bio‐Health Convergence Kangwon National University Chuncheon Gwangwon South Korea
- Department of Medical Biotechnology, School of Biomedical Science Kangwon National University Chuncheon South Korea
| | - Sung‐Won Kim
- School of Chemical Engineering Sungkyunkwan University Suwon South Korea
| | - Hye Ran Jeon
- Division of Vascular Surgery, Samsung Medical Center School of Medicine, Sungkyunkwan University Seoul South Korea
| | - Dong‐Hyun Lee
- School of Chemical Engineering Sungkyunkwan University Suwon South Korea
| | - Sangyul Baik
- School of Chemical Engineering Sungkyunkwan University Suwon South Korea
| | - Changhyun Pang
- School of Chemical Engineering Sungkyunkwan University Suwon South Korea
| | - Tae‐Hyung Kim
- School of Integrative Engineering Chung‐Ang University Seoul South Korea
| | - Dong‐Ik Kim
- Division of Vascular Surgery, Samsung Medical Center School of Medicine, Sungkyunkwan University Seoul South Korea
| | - Young Charles Jang
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Suk Ho Bhang
- School of Chemical Engineering Sungkyunkwan University Suwon South Korea
| |
Collapse
|
47
|
Mdlovu NV, Lin KS, Weng MT, Lin YS. Design of doxorubicin encapsulated pH-/thermo-responsive and cationic shell-crosslinked magnetic drug delivery system. Colloids Surf B Biointerfaces 2021; 209:112168. [PMID: 34715504 DOI: 10.1016/j.colsurfb.2021.112168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022]
Abstract
The upsurge in cancer cases, such as liver cancer, has claimed millions of lives globally and has prompted the development of novel nanodrug delivery systems. These systems allow cancer drugs to be encapsulated in nanocarriers and delivered to tumor sites, and accordingly, help reduce side effects of the current chemotherapeutic treatments. Herein, we prepared nanocarriers comprising magnetic iron oxide (MIO) nanoparticles that were surface modified with crosslinked Pluronic F127 (PF127) and branched polyethylenimine (bPEI) to form MIOpoly nanocarriers. These nanocarriers were then loaded with doxorubicin (DOX) anticancer drug to form the MIOpoly-DOX complex. The nanocarriers were magnetite and possessed superparamagnetic properties. Small-angle neutron scattering (SANS) analysis indicated that the nanocarriers were thermoresponsive and spherically structured. The characteristic peaks at 1285, 1619, 2844, 2919, 2900, 2840, and 3426 cm-1, corresponding to those of CN, -NH2, -CH2, and OH-, confirmed the successful crosslinking, coating of PF127-bPEI polymers on the surface of MIO nanoparticles and DOX conjugation. The bioavailability of the nanocarriers indicated a more than 85% cell viability when using HepG2 liver cancer cells. A pH (54.8% release in 48 h; pH = 5.4) and temperature (51.0% release in 48 h; 42 °C)-dependent release of DOX was observed, displaying a Korsmeyer-Peppas kinetics model at low pH and Weibull model at high temperatures. The high DOX fluorescence observed for MIOpoly-DOX indicated a high cellular uptake enhanced by alternating magnetic field. These results suggest that MIOpoly synthesized using a combined approach of surface crosslinking and grafted with PF127-bPEI appear to offer promising properties as drug delivery system. Therefore, the nanocarriers developed in the study possess a great potential for targeted delivery and thereby circumventing the limitations of conventional chemotherapy.
Collapse
Affiliation(s)
- Ndumiso Vukile Mdlovu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| | - Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100233, Taiwan.
| | - You-Sheng Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| |
Collapse
|
48
|
Zakerikhoob M, Abbasi S, Yousefi G, Mokhtari M, Noorbakhsh MS. Curcumin-incorporated crosslinked sodium alginate-g-poly (N-isopropyl acrylamide) thermo-responsive hydrogel as an in-situ forming injectable dressing for wound healing: In vitro characterization and in vivo evaluation. Carbohydr Polym 2021; 271:118434. [PMID: 34364574 DOI: 10.1016/j.carbpol.2021.118434] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/26/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Sodium alginate products have been extensively used for wound-dressing. In present study, a series of thermo-sensitive cross-linked poly(N-isopropylacrylamide) grafted sodium alginate (Alg-g-pNIPAM) copolymers were synthesized for delivery of curcumin to wound. FTIR, 1H NMR, elemental analysis and DSC showed successful polymerization and precise structure of copolymers. Thermogelation at 27-42 °C depending on the copolymer concentration, chain-length of pNIPAM and pH was observed. The optimum copolymer with proper rheological and syringeability properties showed excellent thermogelling at a wide range of pH and concentration, and could prolong the release of curcumin up to 72 h. In-vivo wound contraction and histopathological evaluations revealed that in addition to the higher efficacy in wound contraction, the curcumin formulation (Cur-F) significantly reduced the inflammation, enhanced the collagenesis and resulted in increased number of fibroblasts. Well-known anti-oxidant and anti-inflammatory properties of curcumin and in situ-forming nature of Alg-g-pNIPAM can make the system an excellent candidate for further investigations.
Collapse
Affiliation(s)
| | - Sahar Abbasi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maral Mokhtari
- Pathology Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
49
|
Zarrintaj P, Khodadadi Yazdi M, Youssefi Azarfam M, Zare M, Ramsey JD, Seidi F, Reza Saeb M, Ramakrishna S, Mozafari M. Injectable Cell-Laden Hydrogels for Tissue Engineering: Recent Advances and Future Opportunities. Tissue Eng Part A 2021; 27:821-843. [PMID: 33779319 DOI: 10.1089/ten.tea.2020.0341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering intends to create functionalized tissues/organs for regenerating the injured parts of the body using cells and scaffolds. A scaffold as a supporting substrate affects the cells' fate and behavior, including growth, proliferation, migration, and differentiation. Hydrogel as a biomimetic scaffold plays an important role in cellular behaviors and tissue repair, providing a microenvironment close to the extracellular matrix with adjustable mechanical and chemical features that can provide sufficient nutrients and oxygen. To enhance the hydrogel performance and compatibility with native niche, the cell-laden hydrogel is an attractive choice to mimic the function of the targeted tissue. Injectable hydrogels, due to the injectability, are ideal options for in vivo minimally invasive treatment. Cell-laden injectable hydrogels can be utilized for tissue regeneration in a noninvasive way. This article reviews the recent advances and future opportunities of cell-laden injectable hydrogels and their functions in tissue engineering. It is expected that this strategy allows medical scientists to develop a minimally invasive method for tissue regeneration in clinical settings. Impact statement Cell-laden hydrogels have been vastly utilized in biomedical application, especially tissue engineering. It is expected that this upcoming review article will be a motivation for the community. Although this strategy is still in its early stages, this concept is so alluring that it has attracted all scientists in the community and specialists at academic health centers. Certainly, this approach requires more development, and a bunch of crucial challenges have yet to be solved. In this review, we discuss this various aspects of this approach, the questions that must be answered, the expectations associated with it, and rational restrictions to develop injectable cell-laden hydrogels.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | | | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, China
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, and Faculty of Engineering, National University of Singapore, Singapore, Singapore.,Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
A Green Composite Based on Gelatin/Agarose/Zeolite as a Potential Scaffold for Tissue Engineering Applications. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5050125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Designing a novel platform capable of providing a proper tissue regeneration environment is a key factor in tissue engineering. Herein, a green composite based on gelatin/agarose/zeolite with pomegranate peel extract was fabricated as an innovative platform for tissue engineering. Gelatin/agarose was loaded with pomegranate peel extract-loaded zeolite to evaluate its swelling behavior, porosity, release rate, and cell viability performance. The composite characteristics were evaluated using XRD and DSC. The hydrogel performance can be adjusted for the desired aim by zeolite content manipulation, such as controlled release. It was shown that the green nanocomposite exhibited proper cellular activity along with a controlled release rate. Moreover, the hydrogel composite’s swelling ratio was decreased by adding zeolite. This study suggested a fully natural composite as a potential biomaterial for tissue engineering, which opens new ways to design versatile hydrogels for the regeneration of damaged tissues. The hydrogel performance can be adjusted specifically by zeolite content manipulation for controlled release.
Collapse
|