1
|
Hu Y, Wang F, Ma Y, Ma S, Wang L. Recent Advances in Polyvinylidene Fluoride with Multifunctional Properties in Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412476. [PMID: 40066503 DOI: 10.1002/smll.202412476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/17/2025] [Indexed: 04/17/2025]
Abstract
Amid the global energy crisis and rising emphasis on sustainability, efficient energy harvesting has become a research priority. Nanogenerators excel in converting abundant mechanical and thermal energy into electricity, offering a promising path for sustainable solutions. Among various nanogenerator's materials, Polyvinylidene fluoride (PVDF), with its distinctive molecular structure, exhibits multifunctional electrical properties including dielectric, piezoelectric and pyroelectric characteristics. These properties combined with its excellent flexibility make PVDF a prime candidate material for nanogenerators. In nanogenerators, this material is capable of efficiently collecting and converting energy. This paper discusses how PVDF's properties are manifested in three types of nanogenerators and compares the performance of these nanogenerators. In addition, strategies to improve the output performance of nanogenerators are demonstrated, including physical and chemical modification of materials, as well as structural optimization strategies such as hybrid structures and external circuits. It also introduces the application of this material in natural and human energy harvesting, as well as its promising prospects in medical technologies and smart home systems. The aim is to promote the use of PVDF in self-powered sensing, energy harvesting and smart monitoring, thereby providing valuable insights for designing more efficient and versatile nanogenerators.
Collapse
Affiliation(s)
- Yueming Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yan Ma
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shufeng Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Chen S, Tong X, Huo Y, Liu S, Yin Y, Tan ML, Cai K, Ji W. Piezoelectric Biomaterials Inspired by Nature for Applications in Biomedicine and Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406192. [PMID: 39003609 DOI: 10.1002/adma.202406192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Bioelectricity provides electrostimulation to regulate cell/tissue behaviors and functions. In the human body, bioelectricity can be generated in electromechanically responsive tissues and organs, as well as biomolecular building blocks that exhibit piezoelectricity, with a phenomenon known as the piezoelectric effect. Inspired by natural bio-piezoelectric phenomenon, efforts have been devoted to exploiting high-performance synthetic piezoelectric biomaterials, including molecular materials, polymeric materials, ceramic materials, and composite materials. Notably, piezoelectric biomaterials polarize under mechanical strain and generate electrical potentials, which can be used to fabricate electronic devices. Herein, a review article is proposed to summarize the design and research progress of piezoelectric biomaterials and devices toward bionanotechnology. First, the functions of bioelectricity in regulating human electrophysiological activity from cellular to tissue level are introduced. Next, recent advances as well as structure-property relationship of various natural and synthetic piezoelectric biomaterials are provided in detail. In the following part, the applications of piezoelectric biomaterials in tissue engineering, drug delivery, biosensing, energy harvesting, and catalysis are systematically classified and discussed. Finally, the challenges and future prospects of piezoelectric biomaterials are presented. It is believed that this review will provide inspiration for the design and development of innovative piezoelectric biomaterials in the fields of biomedicine and nanotechnology.
Collapse
Affiliation(s)
- Siying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyu Tong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shuaijie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Mei-Ling Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
3
|
Mercante LA, Teodoro KBR, dos Santos DM, dos Santos FV, Ballesteros CAS, Ju T, Williams GR, Correa DS. Recent Progress in Stimuli-Responsive Antimicrobial Electrospun Nanofibers. Polymers (Basel) 2023; 15:4299. [PMID: 37959981 PMCID: PMC10647808 DOI: 10.3390/polym15214299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Electrospun nanofibrous membranes have garnered significant attention in antimicrobial applications, owing to their intricate three-dimensional network that confers an interconnected porous structure, high specific surface area, and tunable physicochemical properties, as well as their notable capacity for loading and sustained release of antimicrobial agents. Tailoring polymer or hybrid-based nanofibrous membranes with stimuli-responsive characteristics further enhances their versatility, enabling them to exhibit broad-spectrum or specific activity against diverse microorganisms. In this review, we elucidate the pivotal advancements achieved in the realm of stimuli-responsive antimicrobial electrospun nanofibers operating by light, temperature, pH, humidity, and electric field, among others. We provide a concise introduction to the strategies employed to design smart electrospun nanofibers with antimicrobial properties. The core section of our review spotlights recent progress in electrospun nanofiber-based systems triggered by single- and multi-stimuli. Within each stimulus category, we explore recent examples of nanofibers based on different polymers and antimicrobial agents. Finally, we delve into the constraints and future directions of stimuli-responsive nanofibrous materials, paving the way for their wider application spectrum and catalyzing progress toward industrial utilization.
Collapse
Affiliation(s)
- Luiza A. Mercante
- Institute of Chemistry, Federal University of Bahia (UFBA), Salvador 40170-280, BA, Brazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Danilo M. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Francisco V. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Camilo A. S. Ballesteros
- Bachelor in Natural Sciences and Environmental Education, Pedagogical and Technological University of Colombia (UPTC), Tunja 150003, Colombia;
| | - Tian Ju
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| |
Collapse
|
4
|
Zhang M, Tan Z, Zhang Q, Shen Y, Mao X, Wei L, Sun R, Zhou F, Liu C. Flexible Self-Powered Friction Piezoelectric Sensor Based on Structured PVDF-Based Composite Nanofiber Membranes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37326608 DOI: 10.1021/acsami.3c05540] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the rapid development of the economy and technology, intelligent wearable devices have gradually entered public life. Flexible sensors, as the main component of wearable devices, have been widely concerned. However, traditional flexible sensors need an external power supply, lacking flexibility and sustainable power supply. In this study, structured poly(vinylidene fluoride) (PVDF)-based composite nanofiber membranes doped with different mass fractions of MXene and zinc oxide (ZnO) were prepared by electrospinning and were then assembled to flexible self-powered friction piezoelectric sensors. The addition of MXene and ZnO endowed PVDF nanofiber membranes with better piezoelectric properties. The structured PVDF/MXene-PVDF/ZnO (PM/PZ) nanofiber membranes with a double-layer structure, interpenetrating structure, or core-shell structure could further enhance the piezoelectric properties of PVDF-based nanofiber membranes through the synergistic effects of filler doping and structural design. In particular, the output voltage of the self-powered friction piezoelectric sensor made of a core-shell PM/PZ nanofiber membrane showed a good linear relationship with the applied pressure and could produce a good piezoelectric response to the bending deformation caused by human motion.
Collapse
Affiliation(s)
- Mengdi Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an 710048, China
| | - Zifang Tan
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an 710048, China
| | - Qingling Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yutong Shen
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an 710048, China
| | - Xue Mao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an 710048, China
| | - Liang Wei
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an 710048, China
| | - Runjun Sun
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an 710048, China
| | - Fenglei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University, Xi'an 710048, China
| |
Collapse
|
5
|
Pereira AT, Rodrigues CRS, Silva AC, Vidal R, Ventura JO, Gonçalves IC, Pereira AM. Tailoring the Electron Trapping Effect of a Biocompatible Triboelectric Hydrogel by Graphene Oxide Incorporation towards Self-Powered Medical Electronics. ACS Biomater Sci Eng 2023. [PMID: 37256830 DOI: 10.1021/acsbiomaterials.2c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Triboelectric nanogenerators (TENGs) are associated with several drawbacks that limit their application in the biomedical field, including toxicity, thrombogenicity, and poor performance in the presence of fluids. By proposing the use of a hemo/biocompatible hydrogel, poly(2-hydroxyethyl methacrylate) (pHEMA), this study bypasses these barriers. In contact-separation mode, using polytetrafluoroethylene (PTFE) as a reference, pHEMA generates an output of 100.0 V, under an open circuit, 4.7 μA, and 0.68 W/m2 for an internal resistance of 10 MΩ. Our findings unveil that graphene oxide (GO) can be used to tune pHEMA's triboelectric properties in a concentration-dependent manner. At the lowest measured concentration (0.2% GO), the generated outputs increase to 194.5 V, 5.3 μA, and 1.28 W/m2 due to the observed increase in pHEMA's surface roughness, which expands the contact area. Triboelectric performance starts to decrease as GO concentration increases, plateauing at 11% volumetric, where the output is 51 V, 1.76 μA, and 0.17 W/m2 less than pHEMA's. Increases in internal resistance, from 14 ΩM to greater than 470 ΩM, ζ-potential, from -7.3 to -0.4 mV, and open-circuit characteristic charge decay periods, from 90 to 120 ms, are all observed in conjunction with this phenomenon, which points to GO function as an electron trapping site in pHEMA's matrix. All of the composites can charge a 10 μF capacitor in 200 s, producing a voltage between 0.25 and 3.5 V and allowing the operation of at least 20 LEDs. The triboelectric output was largely steady throughout the 3.33 h durability test. Voltage decreases by 38% due to contact-separation frequency, whereas current increases by 77%. In terms of pressure, it appears to have little effect on voltage but boosts current output by 42%. Finally, pHEMA and pHEMA/GO extracts were cytocompatible toward fibroblasts. According to these results, pHEMA has a significant potential to function as a biomaterial to create bio/hemocompatible TENGs and GO to precisely control its triboelectric outputs.
Collapse
Affiliation(s)
- Andreia T Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cátia R S Rodrigues
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Ana C Silva
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Ricardo Vidal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - João O Ventura
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Inês C Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - André M Pereira
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Chen X, Li H, Xu Z, Lu L, Pan Z, Mao Y. Electrospun Nanofiber-Based Bioinspired Artificial Skins for Healthcare Monitoring and Human-Machine Interaction. Biomimetics (Basel) 2023; 8:223. [PMID: 37366818 DOI: 10.3390/biomimetics8020223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Artificial skin, also known as bioinspired electronic skin (e-skin), refers to intelligent wearable electronics that imitate the tactile sensory function of human skin and identify the detected changes in external information through different electrical signals. Flexible e-skin can achieve a wide range of functions such as accurate detection and identification of pressure, strain, and temperature, which has greatly extended their application potential in the field of healthcare monitoring and human-machine interaction (HMI). During recent years, the exploration and development of the design, construction, and performance of artificial skin has received extensive attention from researchers. With the advantages of high permeability, great ratio surface of area, and easy functional modification, electrospun nanofibers are suitable for the construction of electronic skin and further demonstrate broad application prospects in the fields of medical monitoring and HMI. Therefore, the critical review is provided to comprehensively summarize the recent advances in substrate materials, optimized fabrication techniques, response mechanisms, and related applications of the flexible electrospun nanofiber-based bio-inspired artificial skin. Finally, some current challenges and future prospects are outlined and discussed, and we hope that this review will help researchers to better understand the whole field and take it to the next level.
Collapse
Affiliation(s)
- Xingwei Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Han Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Ziteng Xu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lijun Lu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Zhang M, Liu C, Li B, Shen Y, Wang H, Ji K, Mao X, Wei L, Sun R, Zhou F. Electrospun PVDF-based piezoelectric nanofibers: materials, structures, and applications. NANOSCALE ADVANCES 2023; 5:1043-1059. [PMID: 36798499 PMCID: PMC9926905 DOI: 10.1039/d2na00773h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/17/2023] [Indexed: 05/14/2023]
Abstract
Polyvinylidene fluoride (PVDF) has been considered as a promising piezoelectric material for advanced sensing and energy storage systems because of its high dielectric constant and good electroactive response. Electrospinning is a straightforward, low cost, and scalable technology that can be used to create PVDF-based nanofibers with outstanding piezoelectric characteristics. Herein, we summarize the state-of-the-art progress on the use of filler doping and structural design to enhance the output performance of electrospun PVDF-based piezoelectric fiber films. We divide the fillers into single filler and double fillers and make comments on the effects of various dopant materials on the performance and the underlying mechanism of the PVDF-based piezoelectric fiber film. The effects of highly oriented structures, core-shell structures, and multilayer composite structures on the output properties of PVDF-based piezoelectric nanofibers are discussed in detail. Furthermore, the perspectives and opportunities for PVDF piezoelectric nanofibers in the fields of health care, environmental monitoring, and energy collection are also discussed.
Collapse
Affiliation(s)
- Mengdi Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Boyu Li
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Yutong Shen
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Hao Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Keyu Ji
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Xue Mao
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Liang Wei
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Runjun Sun
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Fenglei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London London WC1E 6BT UK
| |
Collapse
|
8
|
Acosta M, Santiago MD, Irvin JA. Electrospun Conducting Polymers: Approaches and Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248820. [PMID: 36556626 PMCID: PMC9782039 DOI: 10.3390/ma15248820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 05/14/2023]
Abstract
Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications.
Collapse
Affiliation(s)
- Mariana Acosta
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
| | - Marvin D. Santiago
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Jennifer A. Irvin
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
- Correspondence:
| |
Collapse
|
9
|
Delgado-Alvarado E, Martínez-Castillo J, Zamora-Peredo L, Gonzalez-Calderon JA, López-Esparza R, Ashraf MW, Tayyaba S, Herrera-May AL. Triboelectric and Piezoelectric Nanogenerators for Self-Powered Healthcare Monitoring Devices: Operating Principles, Challenges, and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4403. [PMID: 36558257 PMCID: PMC9781874 DOI: 10.3390/nano12244403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The internet of medical things (IoMT) is used for the acquisition, processing, transmission, and storage of medical data of patients. The medical information of each patient can be monitored by hospitals, family members, or medical centers, providing real-time data on the health condition of patients. However, the IoMT requires monitoring healthcare devices with features such as being lightweight, having a long lifetime, wearability, flexibility, safe behavior, and a stable electrical performance. For the continuous monitoring of the medical signals of patients, these devices need energy sources with a long lifetime and stable response. For this challenge, conventional batteries have disadvantages due to their limited-service time, considerable weight, and toxic materials. A replacement alternative to conventional batteries can be achieved for piezoelectric and triboelectric nanogenerators. These nanogenerators can convert green energy from various environmental sources (e.g., biomechanical energy, wind, and mechanical vibrations) into electrical energy. Generally, these nanogenerators have simple transduction mechanisms, uncomplicated manufacturing processes, are lightweight, have a long lifetime, and provide high output electrical performance. Thus, the piezoelectric and triboelectric nanogenerators could power future medical devices that monitor and process vital signs of patients. Herein, we review the working principle, materials, fabrication processes, and signal processing components of piezoelectric and triboelectric nanogenerators with potential medical applications. In addition, we discuss the main components and output electrical performance of various nanogenerators applied to the medical sector. Finally, the challenges and perspectives of the design, materials and fabrication process, signal processing, and reliability of nanogenerators are included.
Collapse
Affiliation(s)
- Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico
| | - Jaime Martínez-Castillo
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico
| | - Luis Zamora-Peredo
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico
| | - Jose Amir Gonzalez-Calderon
- Cátedras CONACYT-Institute of Physic, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, San Luis Potosí, Mexico
| | | | | | - Shahzadi Tayyaba
- Department of Computer Engineering, The University of Lahore, Lahore 54000, Pakistan
| | - Agustín L. Herrera-May
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico
- Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico
| |
Collapse
|
10
|
Varun S, George NM, Chandran AM, Varghese LA, Mural PKS. Multifaceted PVDF nanofibers in energy, water and sensors: A contemporary review (2018 to 2022) and future perspective. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Papež N, Pisarenko T, Ščasnovič E, Sobola D, Ţălu Ş, Dallaev R, Částková K, Sedlák P. A Brief Introduction and Current State of Polyvinylidene Fluoride as an Energy Harvester. COATINGS 2022; 12:1429. [DOI: 10.3390/coatings12101429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
This review summarizes the current trends and developments in the field of polyvinylidene fluoride (PVDF) for use mainly as a nanogenerator. The text covers PVDF from the first steps of solution mixing, through production, to material utilization, demonstration of results, and future perspective. Specific solvents and ratios must be selected when choosing and mixing the solution. It is necessary to set exact parameters during the fabrication and define whether the material will be flexible nanofibers or a solid layer. Based on these selections, the subsequent use of PVDF and its piezoelectric properties are determined. The most common degradation phenomena and how PVDF behaves are described in the paper. This review is therefore intended to provide a basic overview not only for those who plan to start producing PVDF as energy nanogenerators, active filters, or sensors but also for those who are already knowledgeable in the production of this material and want to expand their existing expertise and current overview of the subject.
Collapse
Affiliation(s)
- Nikola Papež
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic
| | - Tatiana Pisarenko
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic
| | - Erik Ščasnovič
- Central European Institute of Technology, Purkyňova 656/123, 61200 Brno, the Czech Republic
| | - Dinara Sobola
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic
- Institute of Physics of Materials, the Czech Academy of Sciences, Žižkova 22, 61662 Brno, the Czech Republic
| | - Ştefan Ţălu
- Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Constantin Daicoviciu Street, No. 15, 400020 Cluj-Napoca, Romania
| | - Rashid Dallaev
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic
| | - Klára Částková
- Central European Institute of Technology, Purkyňova 656/123, 61200 Brno, the Czech Republic
- Department of Ceramics and Polymers, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61600 Brno, the Czech Republic
| | - Petr Sedlák
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic
| |
Collapse
|
12
|
|
13
|
Sharma S, Shekhar Mishra S, Kumar RP, Yadav RM. Recent progress on polyvinylidene difluoride based nanocomposite: Applications in energy harvesting and sensing. NEW J CHEM 2022. [DOI: 10.1039/d2nj00002d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discovered in 2006, Nanogenerators have attracted much attention as promising energy-harvesting devices. It harnesses energy by utilizing piezoelectric, pyroelectric thermoelectric properties of nanomaterials to produce electricity and have potential to...
Collapse
|
14
|
An Effective Self-Powered Piezoelectric Sensor for Monitoring Basketball Skills. SENSORS 2021; 21:s21155144. [PMID: 34372379 PMCID: PMC8347581 DOI: 10.3390/s21155144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022]
Abstract
Self-powered piezoelectric sensor can achieve real-time and harmless monitoring of motion processes without external power supply, which can be attached on body skin or joints to detect human motion and powered by mechanical energy. Here, a sensor for monitoring emergent motion is developed using the PVDF as active material and piezoelectric output as sensing signal. The multi-point control function enables the sensor to monitor the sequence of force order, angle change, and motion frequency of the “elbow lift, arm extension, and wrist compression” during shooting basketball. In addition, the sensor shows can simultaneously charge the capacitor to provide more power for intelligence, typically Bluetooth transmission. The sensor shows good performance in other field, such as rehabilitation monitoring and speech input systems. Therefore, the emerging application of flexible sensors have huge long-term prospects in sport big data collection and Internet of Things (IoT).
Collapse
|