1
|
Wang M, Gao Y, Liu X, Li Z, Xiao J, Gao X, Gibson MI, Guo Q. Cirrhotic hepatocellular carcinoma-based decellularized liver cancer model for local chemoembolization evaluation. Acta Biomater 2024; 176:144-155. [PMID: 38244660 DOI: 10.1016/j.actbio.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Transarterial chemoembolization (TACE) is a common treatment for unresectable intermediate stage hepatocellular carcinoma (HCC) and involves the combination of chemotherapy agents and embolic materials to target and block the blood supply to the tumor, leading to localized treatment. However, the selection of clinical chemoembolization agents remains limited, and the effectiveness of various agents is still under investigation. Meanwhile, replicating the complex vasculature and extracellular matrix (ECM) circumstances of HCC in in vitro models for evaluating embolic agents proves to be challenging. Herein, we developed a decellularized cancerous liver model with translucent appearance, a complicated hepatic vascular system and tissue-specific ECM for the evaluation of embolic agents. Inkpad oil and microparticles were used to illustrate different systems of vascular structures between healthy and HCC rats' livers. Quantitative analysis with AngioTool revealed significant differences in vessel density and lacunarity between the two groups. Proteomics showed higher secretion of collagens in the HCC rat liver models than in healthy livers. Utilizing this in vitro model, we investigated the impact of tumor-specific vascular structure and ECM composition on chemoembolization performance, the two key factors inaccessible by currently available drug release testing platforms. Our findings revealed that the presence of an aberrant vascular system and the distorted ECM within the model led to drug retention. This preclinical model holds great promise as a valuable tool for evaluating embolic agents and studying their performance in the tumor microenvironment. STATEMENT OF SIGNIFICANCE: Transarterial chemoembolization (TACE), which employs drug-eluting embolic agents to obstruct the tumor-feeding vessels while locally releasing chemotherapeutic drugs into the tumor, has become the first-line treatment of unresectable liver cancer over past two decades. Nevertheless, the advancement of effective drug-eluting embolic agents has been retarded due to the lack of appropriate in vitro models for assessing the local embolization and chemotherapy performances in TACE. Here we developed a cirrhotic hepatocellular carcinoma-based decellularized liver cancer model, which preserves the aberrant vasculatures and tumor-specific extracellular matrix of liver cancer, for TACE evaluation. This model incorporates a blood flow simulation component to assess the dynamics of drug release behaviors of chemoembolic agents within tumor-mimicking conditions, more accurately replicating the in vivo environment for the locoregional assessments as compared to conventional in vitro models.
Collapse
Affiliation(s)
- Meijuan Wang
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yanan Gao
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemistry and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Xiaoya Liu
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhihua Li
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jingyu Xiao
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xu Gao
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Matthew I Gibson
- Department of Chemistry and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Qiongyu Guo
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Liu X, Wang X, Luo Y, Wang M, Chen Z, Han X, Zhou S, Wang J, Kong J, Yu H, Wang X, Tang X, Guo Q. A 3D Tumor-Mimicking In Vitro Drug Release Model of Locoregional Chemoembolization Using Deep Learning-Based Quantitative Analyses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206195. [PMID: 36793129 PMCID: PMC10104640 DOI: 10.1002/advs.202206195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Primary liver cancer, with the predominant form as hepatocellular carcinoma (HCC), remains a worldwide health problem due to its aggressive and lethal nature. Transarterial chemoembolization, the first-line treatment option of unresectable HCC that employs drug-loaded embolic agents to occlude tumor-feeding arteries and concomitantly delivers chemotherapeutic drugs into the tumor, is still under fierce debate in terms of the treatment parameters. The models that can produce in-depth knowledge of the overall intratumoral drug release behavior are lacking. This study engineers a 3D tumor-mimicking drug release model, which successfully overcomes the substantial limitations of conventional in vitro models through utilizing decellularized liver organ as a drug-testing platform that uniquely incorporates three key features, i.e., complex vasculature systems, drug-diffusible electronegative extracellular matrix, and controlled drug depletion. This drug release model combining with deep learning-based computational analyses for the first time permits quantitative evaluation of all important parameters associated with locoregional drug release, including endovascular embolization distribution, intravascular drug retention, and extravascular drug diffusion, and establishes long-term in vitro-in vivo correlations with in-human results up to 80 d. This model offers a versatile platform incorporating both tumor-specific drug diffusion and elimination settings for quantitative evaluation of spatiotemporal drug release kinetics within solid tumors.
Collapse
Affiliation(s)
- Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- Department of PharmacyShenzhen Children's HospitalShenzhenGuangdong518026P. R. China
| | - Xueying Wang
- Department of Electronic and Electrical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Yucheng Luo
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Meijuan Wang
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Zijian Chen
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Xiaoyu Han
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Sijia Zhou
- Department of MolecularCellular and Developmental Biology (MCD)Centre de Biologie Integrative (CBI)University of ToulouseCNRSUPSToulouse31062France
| | - Jiahao Wang
- Mechanobiology InstituteNational University of SingaporeSingapore117411Singapore
| | - Jian Kong
- Department of Interventional RadiologyFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medical College of Jinan UniversityShenzhen People's HospitalShenzhenGuangdong518020P. R. China
| | - Hanry Yu
- Mechanobiology InstituteNational University of SingaporeSingapore117411Singapore
- Department of PhysiologyInstitute of Digital Medicineand Mechanobiology InstituteNational University of SingaporeSingapore117593Singapore
| | - Xiaobo Wang
- Department of MolecularCellular and Developmental Biology (MCD)Centre de Biologie Integrative (CBI)University of ToulouseCNRSUPSToulouse31062France
| | - Xiaoying Tang
- Department of Electronic and Electrical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- Jiaxing Research InstituteSouthern University of Science and TechnologyJiaxingZhejiang314000P. R. China
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| |
Collapse
|
3
|
Gao Y, Xiao J, Chen Z, Ma Y, Liu X, Yang D, Leo HL, Yu H, Kong J, Guo Q. Engineering orthotopic tumor spheroids with organ-specific vasculatures for local chemoembolization evaluation. Biomater Sci 2023; 11:2115-2128. [PMID: 36723179 DOI: 10.1039/d2bm01632j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Developing a three-dimensional (3D) in vitro tumor model with vasculature systems suitable for testing endovascular interventional therapies remains a challenge. Here we develop an orthotopic liver tumor spheroid model that captures the organ-level complexity of vasculature systems and the extracellular matrix to evaluate transcatheter arterial chemoembolization (TACE) treatment. The orthotopic tumor spheroids are derived by seeding HepG2 cell colonies with controlled size and location surrounding the portal triads in a decellularized rat liver matrix and are treated by clinically relevant drug-eluting beads embolized in a portal vein vasculature while maintaining dynamic physiological conditions with nutrient and oxygen supplies through the hepatic vein vasculature. The orthotopic tumor model exhibits strong drug retention inside the spheroids and embolization location-dependent cellular apoptosis responses in an analogous manner to in vivo conditions. Such a tumor spheroid model built in a decellularized scaffold containing organ-specific vasculatures, which closely resembles the unique tumor microenvironment, holds the promise to efficiently assess various diagnostic and therapeutic strategies for endovascular therapies.
Collapse
Affiliation(s)
- Yanan Gao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Jingyu Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Zijian Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China. .,Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yutao Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Dishuang Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore 138669, Singapore.,Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Jian Kong
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|