1
|
Xiao L, Hou J, Liu H, Lu Q. Targeting drug cocktail hydrogel platform for inhibiting tumor growth and metastasis. Mater Today Bio 2025; 32:101798. [PMID: 40343161 PMCID: PMC12059701 DOI: 10.1016/j.mtbio.2025.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
The combination therapy could overcome the limitation of monotherapy to inhibit tumor recurrence and metastasis, but is usually constrained by complex fabrication processes. Here, a tunable hydrogel platform was developed using different silk nanocarriers, which independently achieve flexible functional optimization of various drugs. Silk nanorods (SNR) were modified with cRGDfK peptides to achieve targeting ability to tumor vessels and then loaded with hydrophobic vascular inhibitor Combretastatin A4 (CA4). The loading of CA4 and the targeted modification could be tuned to enhance the destruction of tumor vessels. Both hydrophilic doxorubicin (DOX) and hydrophobic paclitaxel (PTX) were co-loaded on silk nanofibers (SNF) to form injectable hydrogels with optimized combination chemotherapy. The drug-laden SNR and SNF were blended directly to form injectable hydrogels without the compromise of drug biological activity. Both the targeting modification of SNR and the optimized co-delivery of DOX and PTX improved the therapeutic efficiency in vitro and in vivo. The long-term inhibition of tumor recurrence and metastasis was achieved through the injectable silk nanocarriers, which are superior to previous combination chemotherapy systems of DOX and PTX. The gradual modular fabrication process and simple physical blending endowed the systems with high flexibility and tunability, suggesting a suitable platform for designing a drug cocktail system.
Collapse
Affiliation(s)
- Liying Xiao
- Institutes for Translational Medicine, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jianwen Hou
- Department of Trauma Orthopedics, The Second People's Hospital of Lianyungang Affiliated to Bengbu Medical College, Lianyungang 222023, People's Republic of China
| | - Hongxiang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, People's Republic of China
| | - Qiang Lu
- Institutes for Translational Medicine, Soochow University, Suzhou, 215123, People's Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, People's Republic of China
| |
Collapse
|
2
|
Chen Q, Wu M, Yao J, Shao Z, Chen X. Enzyme/inorganic nanoparticle dual-loaded animal protein/plant protein composite nanospheres and their synergistic effect in cancer therapy. J Mater Chem B 2023; 11:4529-4538. [PMID: 37161762 DOI: 10.1039/d3tb00402c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
It is a viable strategy to develop a safer and tumor-specific method by considering the tumor microenvironment to optimize the curative effect and reduce the side effects in cancer treatment. In this study, glucose oxidase (GOx) and Fe3O4 nanoparticles were successfully loaded inside regenerated silk fibroin/zein (RSF/zein) nanospheres to obtain dual-loaded Fe3O4/GOx@RSF/zein nanospheres. The unique structure of the RSF/zein nanospheres reported in our previous work was favorable to loading sufficient amounts of GOx and Fe3O4 nanoparticles in the nanospheres. For Fe3O4/GOx@RSF/zein nanospheres, GOx depletes endogenous glucose via an enzyme-catalyzed bioreaction, simultaneously generating plenty of H2O2in situ. It was further catalyzed through a Fe3O4-mediated Fenton reaction to form highly toxic hydroxyl free radicals (˙OH) in the acidic tumor microenvironment. These two successive reactions made up the combination of starvation therapy and chemodynamic therapy during cancer treatment. The catalytic activity of GOx loaded in the RSF/zein nanospheres is similar to that of the pristine enzyme. It was maintained for more than one month due to the protection of the RSF/zein nanospheres. The methylene blue degradation results confirmed the sequential reaction by GOx and Fe3O4 from Fe3O4/GOx@RSF/zein nanospheres. The in vitro experiments demonstrated that the Fe3O4/GOx@RSF/zein nanospheres entered MCF-7 cells and generated ˙OH free radicals. Therefore, these Fe3O4/GOx@RSF/zein nanospheres exhibited a considerable synergistic therapeutic effect. They showed more efficient suppression in cancer cell growth than either single-loaded GOx@RSF/zein or Fe3O4@RSF/zein nanospheres, achieving the design goal for the nanospheres. Therefore, the Fe3O4/GOx@RSF/zein nanospheres cut off the nutrient supply due to the strong glucose dependence of tumor cells and generated highly toxic ˙OH free radicals in tumor cells, effectively enhancing the anticancer effect and minimizing side effects. Therefore, in future clinical applications, the Fe3O4/GOx@RSF/zein nanospheres developed in this study have significant potential for combining starvation and chemodynamic therapy.
Collapse
Affiliation(s)
- Qiaolin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Mi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
3
|
Wang X, Liu K, Fu S, Wu X, Xiao L, Yang Y, Zhang Z, Lu Q. Silk Nanocarrier with Tunable Size to Improve Transdermal Capacity for Hydrophilic and Hydrophobic Drugs. ACS APPLIED BIO MATERIALS 2023; 6:74-82. [PMID: 36603189 DOI: 10.1021/acsabm.2c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transdermal drug delivery is an attractive option for multiple disease therapies as it reduces adverse reactions and improves patient compliance. Water-dispersible β-sheet rich silk nanofiber carriers have hydrophobic properties that benefit transdermal delivery but still show inferior transdermal capacities. Thus, hydrophobic silk nanofibers were fabricated to fine-tune their size and endow them with desirable transdermal delivery capacities. Silk nanocarrier length was shortened from 2000 nm to approximately 40 nm after ultrasonic treatment. In vitro human skin and in vivo animal studies revealed different transdermal behaviors for silk nanocarriers at different nanosizes. Silk nanocarriers passed slowly through the corneum without destroying the corneum structure. Improved transdermal capacity was achieved for smaller size carriers. Both hydrophilic and hydrophobic drugs could be loaded onto silk nanocarriers, suggesting a promising future for different disease therapies. No cytotoxicity and skin irritation were identified for silk nanocarriers, which strengthened their superiority as transdermal carriers. Therefore, silk nanocarriers <100 nm may promote the percutaneous absorption of active cargos for disease therapy and cosmetic applications.
Collapse
Affiliation(s)
- Xue Wang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Ke Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Shibo Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Xiaoqian Wu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou215123, China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou215123, China
| | - Yali Yang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China.,Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China.,Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou215123, China
| |
Collapse
|
4
|
Pacheco MO, Eccles LE, Davies NA, Armada J, Cakley AS, Kadambi IP, Stoppel WL. Progress in silk and silk fiber-inspired polymeric nanomaterials for drug delivery. FRONTIERS IN CHEMICAL ENGINEERING 2022; 4:1044431. [PMID: 38487791 PMCID: PMC10939129 DOI: 10.3389/fceng.2022.1044431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
The fields of drug and gene delivery have been revolutionized by the discovery and characterization of polymer-based materials. Polymeric nanomaterials have emerged as a strategy for targeted delivery because of features such as their impressive biocompatibility and improved availability. Use of naturally derived polymers in these nanomaterials is advantageous due to their biodegradability and bioresorption. Natural biopolymer-based particles composed of silk fibroins and other silk fiber-inspired proteins have been the focus of research in drug delivery systems due to their simple synthesis, tunable characteristics, and ability to respond to stimuli. Several silk and silk-inspired polymers contain a high proportion of reactive side groups, allowing for functionalization and addition of targeting moieties. In this review, we discuss the main classes of silk and silk-inspired polymers that are being used in the creation of nanomaterials. We also focus on the fabrication techniques used in generating a tunable design space of silk-based polymeric nanomaterials and detail how that translates into use for drug delivery to several distinct microenvironments.
Collapse
Affiliation(s)
- Marisa O Pacheco
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - Lauren E Eccles
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | | | - Jostin Armada
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - Alaura S Cakley
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - Isiri P Kadambi
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - Whitney L Stoppel
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| |
Collapse
|