1
|
G P, Singh M, Gupta PK, Shukla R. Synergy of Microfluidics and Nanomaterials: A Revolutionary Approach for Cancer Management. ACS APPLIED BIO MATERIALS 2025; 8:2716-2734. [PMID: 40100776 DOI: 10.1021/acsabm.5c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Cancer affects millions of individuals every year and is the second most common cause of death. Various therapeutic strategies are explored for the management of cancer including radiation therapy and chemotherapy with or without surgical procedures. However, the drawbacks like poor cancer cell targeting and higher toxicity for healthy cells need the advancement of the therapeutic strategy. The exploration of nanomedicine achieves targeted distribution, and the adoption of microfluidics technology for the preparation of the nanoparticulate system has enhanced the efficacy and uniformity of the nanocarriers. The overview of the existing designs of the microfluidics device assisted in the preparation of the nanoparticles, and various nanodelivery systems formulated using the microfluidic device including liposomes, lipidic nanocarriers, quantum dots, polymeric nanoparticles, and metallic nanocarriers are discussed in this review. Further, the challenges associated with the fabrication of the microfluidics device and the fabrication of microfluidics device-based nanoparticles are detailed here.
Collapse
Affiliation(s)
- Pramoda G
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Mansi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Bio-Science and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
2
|
Judmann B, Keller F, Wängler B, Schirrmacher R, Rudolf R, Wängler C. Are 3D Tumor Cell Spheroids a Utile System for the In Vitro Evaluation of Diagnostic Radiotracers? ACS OMEGA 2024; 9:51349-51362. [PMID: 39758651 PMCID: PMC11696429 DOI: 10.1021/acsomega.4c08214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/07/2025]
Abstract
By possibly bridging the gap between 2D in vitro cell assays and in vivo applications, tumor cell spheroid cultures offer promising avenues for advancing innovation in nuclear medicine. Regarding the in vitro evaluation of therapeutic radioligands, tumor cell spheroids have been successfully used to assess the therapeutic efficacy against human tumors. However, studies employing spheroids for testing diagnostic tracers are missing. The present work investigated the receptor interaction of a diagnostic radioligand with different tumor cell spheroids and compared the results to those received from a standard 2D cell assay to validate the usefulness of 3D cell systems for diagnostic radiotracer testing. For this purpose, a new agent-[68Ga]Ga-NODAGA-PEG5-c(RGDfK)-was developed. In competitive displacement assays against [125I]I-echistatin in human U87MG glioblastoma cell monolayers, NODAGA-PEG5-c(RGDfK) demonstrated specific binding and IC50 values of 3.08 ± 0.12 and 10.39 ± 0.89 μM in the absence and presence of basal membrane extract (BME), respectively. Compared to cell monolayers, the 3D cell aggregates yielded considerably higher IC50 values of 16.46 ± 2.88, 20.52 ± 4.41, and 18.44 ± 6.06 μM in spheroids generated without additive, collagen-1, and BME supplementation and showed considerable unspecific binding. The obtained data were contextualized by investigating differences in morphology, cell viability, and integrin content per cell of the 2D and 3D cell models as well as the influence of ECM composition. Integrin expression per cell was stable, while spheroid density and the associated radioligand uptake were varying, depending on the culture conditions. This suggests a correlation between the NODAGA-PEG5-c(RGDfK)-integrin αvβ3-interaction and cell model compactness. Further, a considerable influence of matrix components on ligand-receptor interaction could be demonstrated. Overall, the results showed profound differences between the 2D and 3D radiotracer assays investigated, and further work is warranted to verify the expected added value of 3D tumor cell spheroids for the evaluation of diagnostic radioligands.
Collapse
Affiliation(s)
- Benedikt Judmann
- Heidelberg
University, Medical Faculty Mannheim, Biomedical Chemistry, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Medical
Faculty Mannheim, Research Campus MOLIE, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Florian Keller
- Medical
Faculty Mannheim, Research Campus MOLIE, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Mannheim
University of Applied Sciences, CeMOS, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany
| | - Björn Wängler
- Medical
Faculty Mannheim, Research Campus MOLIE, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Medical
Faculty Mannheim, Molecular Imaging and Radiochemistry, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Ralf Schirrmacher
- Department
of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Rüdiger Rudolf
- Medical
Faculty Mannheim, Research Campus MOLIE, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Mannheim
University of Applied Sciences, CeMOS, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany
| | - Carmen Wängler
- Heidelberg
University, Medical Faculty Mannheim, Biomedical Chemistry, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Medical
Faculty Mannheim, Research Campus MOLIE, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
3
|
Bahraminasab M, Asgharzade S, Doostmohamadi A, Satari A, Hasannejad F, Arab S. Development of a hydrogel-based three-dimensional (3D) glioblastoma cell lines culture as a model system for CD73 inhibitor response study. Biomed Eng Online 2024; 23:127. [PMID: 39709472 DOI: 10.1186/s12938-024-01320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/23/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Despite the development of various therapeutic approaches over the past decades, the treatment of glioblastoma multiforme (GBM) remains a major challenge. The extracellular adenosine-generating enzyme, CD73, is involved in the pathogenesis and progression of GBM, and targeting CD73 may represent a novel approach to treat this cancer. In this study, three-dimensional culture systems based on three hydrogel compositions were characterized and an optimal type was selected to simulate the GBM microenvironment. In addition, the effect of a CD73 inhibitor on GBM cell aggregates and spheroids was investigated as a potential therapeutic approach for this disease. METHODS Rheology measurements, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and cell proliferation assays were performed to analyze the synthesized hydrogel and select an optimal formulation. The viability of tumor cells in the optimal hydrogel was examined histologically and by confocal microscopy. In addition, the sensitivity of the tumor cells to the CD73 inhibitor was investigated using a cell proliferation assay and real-time PCR. RESULTS The data showed that the hydrogel containing 5 wt% gelatin and 5 wt% sodium alginate had better rheological properties and higher cell viability. Therefore, it could provide a more suitable environment for GBM cells and better mimic the natural microenvironment. GBM cells treated with CD73 inhibitors significantly decreased the proliferation rate and expression of VEGF and HIF1-α in the optimal hydrogel. CONCLUSION Our current research demonstrates the great potential of CD73 inhibitor for clinical translation of cancer studies by analyzing the behavior and function of 3D tumor cells, and thus for more effective treatment protocols for GBM.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Doostmohamadi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Atefeh Satari
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farkhonde Hasannejad
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
- Genetic Department, Breast Cancer Research Center, Moatamed Cancer Institute, ACECR, Tehran, Iran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
4
|
Bhattacharya T, Kumari M, Kaur K, Kaity S, Arumugam S, Ravichandiran V, Roy S. Decellularized extracellular matrix-based bioengineered 3D breast cancer scaffolds for personalized therapy and drug screening. J Mater Chem B 2024; 12:8843-8867. [PMID: 39162395 DOI: 10.1039/d4tb00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Breast cancer (BC) is the second deadliest cancer after lung cancer. Similar to all cancers, it is also driven by a 3D microenvironment. The extracellular matrix (ECM) is an essential component of the 3D tumor micro-environment, wherein it functions as a scaffold for cells and provides metabolic support. BC is characterized by alterations in the ECM. Various studies have attempted to mimic BC-specific ECMs using artificial materials, such as Matrigel. Nevertheless, research has proven that naturally derived decellularized extracellular matrices (dECMs) are superior in providing the essential in vivo-like cues needed to mimic a cancer-like environment. Developing in vitro 3-D BC models is not straightforward and requires extensive analysis of the data established by researchers. For the benefit of researchers, in this review, we have tried to highlight all developmental studies that have been conducted by various scientists so far. The analysis of the conclusions drawn from these studies is also discussed. The advantages and drawbacks of the decellularization methods employed for generating BC scaffolds will be covered, and the review will shed light on how dECM scaffolds help develop a BC environment. The later stages of the article will also focus on immunogenicity issues arising from decellularization and the origin of the tissue. Finally, this review will also discuss the biofabrication of matrices, which is the core part of the bioengineering process.
Collapse
Affiliation(s)
- Teeshyo Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
5
|
Zou Y, Wan X, Ding Z, Tang C, Wang C, Chen X. Design, synthesis, and biological studies of nitric oxide-donating piperlongumine derivatives triggered by lysyl oxidase as anti-triple negative breast cancer agents. Fitoterapia 2024; 177:106091. [PMID: 38908760 DOI: 10.1016/j.fitote.2024.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Nitric oxide (NO) is an important gas messenger molecule with a wide range of biological functions. High concentration of NO exerts promising antitumor effects and is regarded as one of the hot spots in cancer research, that have limitations in their direct application due to its gaseous state, short half-life (seconds) and high reactivity. Lysyl oxidase (LOX) is a copper-dependent amine oxidase that is responsible for the covalent bonding between collagen and elastin and promotes tumor cell invasion and metastasis. The overexpression of LOX in triple-negative breast cancer (TNBC) makes it an attractive target for TNBC therapy. Herein, novel NO donor prodrug molecules were designed and synthesized based on the naturally derived piperlongumine (PL) skeleton, which can be selectively activated by LOX to release high concentrations of NO and PL derivatives, both of them play a synergistic role in TNBC therapy. Among them, the compound TM-1 selectively released NO in highly invasive TNBC cells (MDA-MB-231), and TM-1 was also confirmed as a potential TNBC cell line inhibitor with an inhibitory concentration of 2.274 μM. Molecular docking results showed that TM-1 had a strong and selective binding affinity with LOX protein.
Collapse
Affiliation(s)
- Yu Zou
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xin Wan
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zedan Ding
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chunyang Tang
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuan Wang
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xia Chen
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
6
|
Hu H, Sun C, Chen J, Li Z. Organoids in ovarian cancer: a platform for disease modeling, precision medicine, and drug assessment. J Cancer Res Clin Oncol 2024; 150:146. [PMID: 38509422 PMCID: PMC10955023 DOI: 10.1007/s00432-024-05654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
Ovarian cancer (OC) is a major cause of gynecological cancer mortality, necessitating enhanced research. Organoids, cellular clusters grown in 3D model, have emerged as a disruptive paradigm, transcending the limitations inherent to conventional models by faithfully recapitulating key morphological, histological, and genetic attributes. This review undertakes a comprehensive exploration of the potential in organoids derived from murine, healthy population, and patient origins, encompassing a spectrum that spans foundational principles to pioneering applications. Organoids serve as preclinical models, allowing us to predict how patients will respond to treatments and guiding the development of personalized therapies. In the context of evaluating new drugs, organoids act as versatile platforms, enabling thorough testing of innovative combinations and novel agents. Remarkably, organoids mimic the dynamic nature of OC progression, from its initial formation to the spread to other parts of the body, shedding light on intricate details that hold significant importance. By functioning at an individualized level, organoids uncover the complex mechanisms behind drug resistance, revealing strategic opportunities for effective treatments.
Collapse
Affiliation(s)
- Haiyao Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chong'en Sun
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Tevlek A. The role of decellularized cell derived extracellular matrix in the establishment and culture of in vitrobreast cancer tumor model. Biomed Mater 2024; 19:025037. [PMID: 38286003 DOI: 10.1088/1748-605x/ad2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Decades of research have shown that two-dimensional cell culture studies are insufficient for preclinical cancer diagnosis and treatment, and that cancer cells in three-dimensional (3D) culture systems have better cell-cell and cell-matrix interactions, gene expression, heterogeneity, and structural complexity that more closely resemblein vivotumors. Researchers are still optimizing 3D culturing settings for different cancers. Despite promising tumor spheroid research, tumor cell-only aggregates lack the tumor microenvironment and cannot model tumors. Here, MCF-7 breast cancer cell derived decellularized extracellular matrix (CD-dECMs) were obtained and converted into autologous, biologically active, biocompatible, and non-immunogenic hydrogels to be used as micro-environment in both organoid formation and culture. For the production of organoids, CD-dECM doping concentrations ranging from 0.1 mg ml-1to 1.5 mg ml-1were evaluated, and the lowest concentration was found to be the most effective. For organoid culture, 8 mg ml-1CD-dECM, 4 mg ml-1rat tendon collagen type I (Col I) (4 mg ml-1) and a 1:1 (v/v) mixture of these two were used and the most viable and the biggest organoids were discovered in CD-dECM/Col I (1:1) group. The results show that autologous CD-dECM can replace hydrogels in tumor organoid generation and culture at low and high concentrations, respectively.
Collapse
Affiliation(s)
- Atakan Tevlek
- Middle East Technical University (METU), MEMS Research and Application Center, 06530 Ankara, Turkey
| |
Collapse
|
8
|
Bhattacharya A, Alam K, Roy NS, Kaur K, Kaity S, Ravichandiran V, Roy S. Exploring the interaction between extracellular matrix components in a 3D organoid disease model to replicate the pathophysiology of breast cancer. J Exp Clin Cancer Res 2023; 42:343. [PMID: 38102637 PMCID: PMC10724947 DOI: 10.1186/s13046-023-02926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
In vitro models are necessary to study the pathophysiology of the disease and the development of effective, tailored treatment methods owing to the complexity and heterogeneity of breast cancer and the large population affected by it. The cellular connections and tumor microenvironments observed in vivo are often not recapitulated in conventional two-dimensional (2D) cell cultures. Therefore, developing 3D in vitro models that mimic the complex architecture and physiological circumstances of breast tumors is crucial for advancing our understanding of the illness. A 3D scaffold-free in vitro disease model mimics breast cancer pathophysiology by allowing cells to self-assemble/pattern into 3D structures, in contrast with other 3D models that rely on artificial scaffolds. It is possible that this model, whether applied to breast tumors using patient-derived primary cells (fibroblasts, endothelial cells, and cancer cells), can accurately replicate the observed heterogeneity. The complicated interactions between different cell types are modelled by integrating critical components of the tumor microenvironment, such as the extracellular matrix, vascular endothelial cells, and tumor growth factors. Tissue interactions, immune cell infiltration, and the effects of the milieu on drug resistance can be studied using this scaffold-free 3D model. The scaffold-free 3D in vitro disease model for mimicking tumor pathophysiology in breast cancer is a useful tool for studying the molecular basis of the disease, identifying new therapeutic targets, and evaluating treatment modalities. It provides a more physiologically appropriate high-throughput platform for screening large compound library in a 96-384 well format. We critically discussed the rapid development of personalized treatment strategies and accelerated drug screening platforms to close the gap between traditional 2D cell culture and in vivo investigations.
Collapse
Affiliation(s)
- Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
9
|
The Role of Patient-Derived Organoids in Triple-Negative Breast Cancer Drug Screening. Biomedicines 2023; 11:biomedicines11030773. [PMID: 36979752 PMCID: PMC10045189 DOI: 10.3390/biomedicines11030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive breast cancer subtypes, with a grave prognosis and few effective treatment options. Organoids represent revolutionary three-dimensional cell culture models, derived from stem or differentiated cells and preserving the capacity to differentiate into the cell types of their tissue of origin. The current review aims at studying the potential of patient-derived TNBC organoids for drug sensitivity testing as well as highlighting the advantages of the organoid technology in terms of drug screening. In order to identify relevant studies, a literature review was conducted using the MEDLINE and LIVIVO databases. The search terms “organoid” and “triple-negative breast cancer” were employed, and we were able to identify 25 studies published between 2018 and 2022. The current manuscript represents the first comprehensive review of the literature focusing on the use of patient-derived organoids for drug sensitivity testing in TNBC. Patient-derived organoids are excellent in vitro study models capable of promoting personalized TNBC therapy by reflecting the treatment responses of the corresponding patients and exhibiting high predictive value in the context of patient survival evaluation.
Collapse
|
10
|
Hyper-Branched Cationic Cyclodextrin Polymers for Improving Plasmid Transfection in 2D and 3D Spheroid Cells. Pharmaceutics 2022; 14:pharmaceutics14122690. [PMID: 36559184 PMCID: PMC9785855 DOI: 10.3390/pharmaceutics14122690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
In this article, we used monolayer two dimensional (2D) and 3D multicellular spheroid models to improve our understanding of the gene delivery process of a new modified cationic hyper-branched cyclodextrin-based polymer (Ppoly)-loaded plasmid encoding Enhanced Green Fluorescent Protein (EGFP). A comparison between the cytotoxicity effect and transfection efficiency of the plasmid DNA (pDNA)-loaded Ppoly system in 2D and 3D spheroid cells determined that the transfection efficiency and cytotoxicity of Ppoly-pDNA nanocomplexes were lower in 3D spheroids than in 2D monolayer cells. Furthermore, histopathology visualization of Ppoly-pDNA complex cellular uptake in 3D spheroids demonstrated that Ppoly penetrated into the inner layers. This study indicated that the Ppoly, as a non-viral gene delivery system in complex with pDNA, is hemocompatible, non-toxic, high in encapsulation efficiency, and has good transfection efficiency in both 2D and 3D cell cultures compared to free pDNA and lipofectamine (as the control).
Collapse
|