1
|
Luo T, Yao L, Wu Y, Zhang Y, Lu L, He P, Li N, Dong X, Liu Z. Ultrasound-Stimulated Microbubbles Cavitation Combined with Nitric Oxide Signaling Pathway to Alleviate Tumor Hypoperfusion and Hypoxia in MC38 Tumor Model. Acad Radiol 2025:S1076-6332(25)00267-3. [PMID: 40234163 DOI: 10.1016/j.acra.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/17/2025]
Abstract
RATIONALE AND OBJECTIVES Ultrasound-stimulated microbubbles cavitation (USMC) has been proved to improve tumor blood perfusion, which is closely related to the rise in nitric oxide (NO) bioavailability. This study was aimed to investigate whether the co-administration of USMC and NO signaling molecule could contribute to a further enhancement of tumor perfusion. MATERIALS AND METHODS Ninety-six MC38 tumor-bearing mice were divided into eight groups to compare the efficacy of different NO-related molecules alone and in combination with USMC, including L-arginine (L-Arg), NOC-18 and sodium nitrite (SN). To better evaluate the changes of tumor perfusion, six mice in each group received contrast-enhanced ultrasound imaging and the other six received ultra-resolution microscopy before and after treatment. Differences in NO generation and tumor hypoxia after treatments were also compared to identify an ideal co-therapy strategy. Further, inhibitors of NO synthase and NO receptor were adopted to explore mechanisms of the co-therapy in improving tumor perfusion. RESULTS Contrast-enhanced ultrasound imaging and ultra-resolution microscopy showed that USMC and SN had a positive synergistic effect in improving tumor perfusion. NO synthase inhibitor failed to block this effect while NO receptor inhibitor did. The tumor perfusion enhancement accompanied with the alleviation of tumor hypoxia and the increase of NO production. L-Arg and NOC-18 did not demonstrate synergistic effects with USMC. CONCLUSION Co-administration of USMC and NO pathway is a promising modality to alleviate tumor hypoperfusion and hypoxia, among which SN is an effective reagent playing a positive synergistic effect with USMC.
Collapse
Affiliation(s)
- Tingting Luo
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.)
| | - Lei Yao
- Department of Ultrasound, Army 75th Group Military Hospital, Dali, Yunnan, China (L.Y.)
| | - You Wu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.)
| | - Yi Zhang
- Department of Ultrasound, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, China (Y.Z.)
| | - Lian Lu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.); Department of Ultrasound, the 900th Hospital of the PLA Joint Logistic Support Force, Fuzhou, Fujian, China (L.L.)
| | - Peng He
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.); Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (P.H.)
| | - Ningshan Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.)
| | - Xiaoxiao Dong
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.)
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China (T.L., Y.W., L.L., P.H., N.L., X.D., Z.L.).
| |
Collapse
|
2
|
Abolfazli S, Karav S, Johnston TP, Sahebkar A. Regulatory effects of resveratrol on nitric oxide signaling in cardiovascular diseases. Pharmacol Rep 2025; 77:355-374. [PMID: 39832074 DOI: 10.1007/s43440-025-00694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells. Several therapeutic approaches have been tested to increase the production of NO or some downstream NO signaling pathways. The health benefits of red wine are typically attributed to the polyphenolic phytoalexin, resveratrol (3,5,4'-trihydroxy-trans-stilbene), which is found in several plant species. Resveratrol has beneficial cardiovascular properties, some of which are mediated through endothelial nitric oxide synthase production (eNOS). Resveratrol promotes NO generation from eNOS through various methods, including upregulation of eNOS expression, activation in the enzymatic activity of eNOS, and reversal of eNOS uncoupling. Additionally, by reducing of oxidative stress, resveratrol inhibits the formation of superoxide and inactivation NO, increasing NO bioavailability. This review discusses the scientific literature on resveratrol's beneficial impact on NO signaling and how this effect improves the function of vascular endothelium.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Liang S, Liu Y, Zhu H, Liao G, Zhu W, Zhang L. Emerging nitric oxide gas-assisted cancer photothermal treatment. EXPLORATION (BEIJING, CHINA) 2024; 4:20230163. [PMID: 39713202 PMCID: PMC11655315 DOI: 10.1002/exp.20230163] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Photothermal therapy (PTT) has garnered significant attention in recent years, but the standalone application of PTT still faces limitations that hinder its ability to achieve optimal therapeutic outcomes. Nitric oxide (NO), being one of the most extensively studied gaseous molecules, presents itself as a promising complementary candidate for PTT. In response, various nanosystems have been developed to enable the simultaneous utilization of PTT and NO-mediated gas therapy (GT), with the integration of photothermal agents (PTAs) and thermally-sensitive NO donors being the prevailing approach. This combination seeks to leverage the synergistic effects of PTT and GT while mitigating the potential risks associated with gas toxicity through the use of a single laser irradiation. Furthermore, additional internal or external stimuli have been employed to trigger NO release when combined with different types of PTAs, thereby further enhancing therapeutic efficacy. This comprehensive review aims to summarize recent advancements in NO gas-assisted cancer photothermal treatment. It commences by providing an overview of various types of NO donors and precursors, including those sensitive to photothermal, light, ultrasound, reactive oxygen species, and glutathione. These NO donors and precursors are discussed in the context of dual-modal PTT/GT. Subsequently, the incorporation of other treatment modalities such as chemotherapy (CHT), photodynamic therapy (PDT), alkyl radical therapy, radiation therapy, and immunotherapy (IT) in the creation of triple-modal therapeutic nanoplatforms is presented. The review further explores tetra-modal therapies, such as PTT/GT/CHT/PDT, PTT/GT/CHT/chemodynamic therapy (CDT), PTT/GT/PDT/IT, PTT/GT/starvation therapy (ST)/IT, PTT/GT/Ca2+ overload/IT, PTT/GT/ferroptosis (FT)/IT, and PTT/GT/CDT/IT. Finally, potential challenges and future perspectives concerning these novel paradigms are discussed. This comprehensive review is anticipated to serve as a valuable resource for future studies focused on the development of innovative photothermal/NO-based cancer nanotheranostics.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yufei Liu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guangfu Liao
- College of Material EngineeringFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Zhang
- Department of Critical Care MedicineShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| |
Collapse
|
4
|
Yao L, Xie S, Liu Y, Mengqi L, Xia J, Lu B. Singlet oxygen storage and controlled release for improving photodynamic therapy against hypoxic tumor. Chem Commun (Camb) 2024; 60:14012-14021. [PMID: 39535143 DOI: 10.1039/d4cc04619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photodynamic therapy (PDT) is considered to be a promising tumor treatment method due to its non-invasiveness and low risk. However, there are two factors that affect the efficacy of this therapy. One is the light source and the other is the tumor hypoxia. An emerging PDT strategy has been developed to break these limits. This strategy is to adopt compounds, such as 2-pyridone, anthracene, and naphthalene derivatives, that have the ability to store and controlledly release the singlet oxygen (1O2) to achieve PDT in the dark. In this review, we focus on the construction strategies for integrated antitumor drugs containing these 1O2 storage/release units and photosensitizers and summarize their PDT performance in hypoxic tumors or in the dark. The methods to integrate these compounds with photosensitizers or nanocarriers are also discussed in detail to provide insightful design guidelines for the design of highly efficient antitumor systems based on 1O2 storage and controlled release.
Collapse
Affiliation(s)
- Long Yao
- Analysis and Testing Center, Nantong University, Nantong 226019, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Shaoqi Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuqing Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Liu Mengqi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
5
|
Tang Y, Li Q, Zhou Z, Bai H, Xiao N, Xie J, Li C. Nitric oxide-based multi-synergistic nanomedicine: an emerging therapeutic for anticancer. J Nanobiotechnology 2024; 22:674. [PMID: 39497134 PMCID: PMC11536969 DOI: 10.1186/s12951-024-02929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Gas therapy has emerged as a promising approach for treating cancer, with gases like NO, H2S, and CO showing positive effects. Among these, NO is considered a key gas molecule with significant potential in stopping cancer progression. However, due to its high reactivity and short half-life, delivering NO directly to tumors is crucial for enhancing cancer treatment. NO-driven nanomedicines (NONs) have been developed to effectively deliver NO donors to tumors, showing great progress in recent years. This review provides an overview of the latest advancements in NO-based cancer nanotherapeutics. It discusses the types of NO donors used in current research, the mechanisms of action behind NO therapy for cancer, and the different delivery systems for NO donors in nanotherapeutics. It also explores the potential of combining NO donors with other treatments for enhanced cancer therapy. Finally, it examines the future prospects and challenges of using NONs in clinical settings for cancer treatment.
Collapse
Affiliation(s)
- Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Qiyu Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Huayang Bai
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China.
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Grayton QE, El-Ahmad H, Lynch AL, Nogler ME, Wallet SM, Schoenfisch MH. Nitric Oxide-Releasing Topical Treatments for Cutaneous Melanoma. Mol Pharm 2024; 21:5632-5645. [PMID: 39353049 PMCID: PMC11875128 DOI: 10.1021/acs.molpharmaceut.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Melanoma is an aggressive skin cancer notorious for high levels of drug resistance. Additionally, current treatments such as immunotherapies are often associated with numerous adverse side effects. The use of nitric oxide (NO) may represent an attractive treatment for melanoma due to NO's various anticancer properties, unlikeliness to foster resistance, and limited toxicity toward healthy tissues. The anticancer effects of chemical NO donors have been explored previously but with limited understanding of the needed characteristics for exerting optimal antimelanoma activity. Herein, the in vitro therapeutic efficacy of three macromolecular NO donor systems (i.e., cyclodextrin, mesoporous silica nanoparticles, and hyaluronic acid) with tunable NO-release kinetics was explored by evaluating skin permeation along with toxicity against melanoma and healthy skin cells. Cytotoxicity against melanoma cells was dependent on NO payload and not donor identity or NO-release kinetics. In contrast, cytotoxicity against healthy cells was primarily influenced by the macromolecular NO donor, with cyclodextrin- and hyaluronic acid-based NO donors having the highest therapeutic indices. In vitro skin permeation was influenced by both the size and charge of the NO donor, with smaller, more neutral donors resulting in greater permeation. A Pluronic F127 organogel was optimized for the delivery of a cyclodextrin-based NO donor. Delivery of the NO donor in this manner resulted in increased in vitro skin permeation and reduced tumor growth in an in vivo model.
Collapse
Affiliation(s)
- Quincy E Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Heba El-Ahmad
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, United States
| | - Anna L Lynch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mikaylin E Nogler
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Mazuryk O, Gurgul I, Oszajca M, Polaczek J, Kieca K, Bieszczad-Żak E, Martyka T, Stochel G. Nitric Oxide Signaling and Sensing in Age-Related Diseases. Antioxidants (Basel) 2024; 13:1213. [PMID: 39456466 PMCID: PMC11504650 DOI: 10.3390/antiox13101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Nitric oxide (NO) is a key signaling molecule involved in numerous physiological and pathological processes within the human body. This review specifically examines the involvement of NO in age-related diseases, focusing on the cardiovascular, nervous, and immune systems. The discussion delves into the mechanisms of NO signaling in these diseases, emphasizing the post-translational modifications of involved proteins, such as S-nitrosation and nitration. The review also covers the dual nature of NO, highlighting both its protective and harmful effects, determined by concentration, location, and timing. Additionally, potential therapies that modulate NO signaling, including the use of NO donors and nitric oxide synthases (NOSs) inhibitors in the treatment of cardiovascular, neurodegenerative, and oncological diseases, are analyzed. Particular attention is paid to the methods for the determination of NO and its derivatives in the context of illness diagnosis and monitoring. The review underscores the complexity and dual role of NO in maintaining cellular balance and suggests areas for future research in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Olga Mazuryk
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Ilona Gurgul
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Konrad Kieca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Ewelina Bieszczad-Żak
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Tobiasz Martyka
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| |
Collapse
|
8
|
Dos Reis RA, Sarkar I, Rodrigues MG, Matson JB, Seabra AB, Kashfi K. NO- and H 2S- releasing nanomaterials: A crosstalk signaling pathway in cancer. Nitric Oxide 2024; 151:17-30. [PMID: 39179197 PMCID: PMC11424202 DOI: 10.1016/j.niox.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
The gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) play important roles not only in maintaining physiological functions, but also in pathological conditions and events. Importantly, these molecules show a complex interplay in cancer biology, demonstrating both tumor-promoting and anti-tumor activities depending on their concentration, flux, and the environmental redox state. Additionally, various cell types respond differently to NO and H2S. These gasotransmitters can be synergistically combined with traditional anticancer treatments such as radiotherapy, immunotherapy, chemotherapy, and phototherapy. Notably, NO, and more recently H2S, have been shown to reverse multidrug resistance. Nanomaterials to deliver NO donors and, to a lesser extent, H2S donors, have emerged as a promising approach for targeted delivery of these gasotransmitters. Nanotechnology has advanced the delivery of anticancer drugs, enhancing efficiency and reducing side effects on non-cancerous cells. This review highlights recent progress in the design of NO and H2S-releasing nanomaterials for anticancer effects. It also explores the interactions between NO and H2S, which are crucial for developing combined therapies and nanomedicines with minimal side effects.
Collapse
Affiliation(s)
- Roberta Albino Dos Reis
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580, SP, Brazil
| | - Ishani Sarkar
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580, SP, Brazil
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
9
|
Aikelamu K, Bai J, Zhang Q, Huang J, Wang M, Zhong C. Self-Assembled Nanoparticles of Silicon (IV)-NO Donor Phthalocyanine Conjugate for Tumor Photodynamic Therapy in Red Light. Pharmaceutics 2024; 16:1166. [PMID: 39339203 PMCID: PMC11435187 DOI: 10.3390/pharmaceutics16091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The combination of photodynamic therapy (PDT) and pneumatotherapy is emerging as one of the most effective strategies for increasing cancer treatment efficacy while minimizing side effects. Photodynamic forces affect nitric oxide (NO) levels as activated photosensitizers produce NO, and NO levels in the tumor and microenvironment directly impact tumor cell responsiveness to PDT. In this paper, 3-benzenesulfonyl-4-(1-hydroxy ether)-1,2,5-oxadiazole-2-oxide NO donor-silicon phthalocyanine coupling (SiPc-NO) was designed and prepared into self-assembled nanoparticles (SiPc-NO@NPs) by precipitation method. By further introducing arginyl-glycyl-aspartic acid (RGD) on the surface of nanoparticles, NO-photosensitizer delivery systems (SiPc-NO@RGD NPs) with photo-responsive and tumor-targeting properties were finally prepared and preliminarily evaluated in terms of their formulation properties, NO release, and photosensitizing effects. Furthermore, high reactive oxygen species (ROS) generation efficiency and high PDT efficiency in two breast cancer cell lines (human MCF-7 and mouse 4T1) under irradiation were also demonstrated. The novel SiPc-NO@RGD NPs show great potential for application in NO delivery and two-photon bioimaging-guided photodynamic tumor therapy.
Collapse
Affiliation(s)
- Kadireya Aikelamu
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Ministry of Education, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Jingya Bai
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Ministry of Education, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Qian Zhang
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Ministry of Education, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Jiamin Huang
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Ministry of Education, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Mei Wang
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Ministry of Education, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Chunhong Zhong
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Ministry of Education, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
10
|
Wu D, Chen X, Yao S, He Y, Chen G, Hu X, Chen Y, Lv Z, Yu J, Jin K, Cai Y, Mou X. Platelet Membrane Coated Cu 9S 8-SNAP for Targeting NIR-II Mild Photothermal Enhanced Chemodynamic/Gas Therapy of Triple-Negative Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400919. [PMID: 38639010 DOI: 10.1002/smll.202400919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and uncommon subtype of breast cancer with a poor prognosis. It is crucial to prioritise the creation of a nanotherapeutic method that is highly selective and actively targeting TNBC. This study explores a new nanosystem, Cu9S8-SNAP@PM (C-S@P), composed of Cu9S8-SNAP coated with a platelet membrane (PM). The purpose of this nanosystem is to cure TNBC using multimodal therapy. The utilisation of PM-coated nanoparticles (NPs) enables active targeting, leading to the efficient accumulation of C-S@P within the tumour. The Cu9S8 component within these NPs serves the potential to exert photothermal therapy (PTT) and chemodynamic therapy (CDT). Simultaneously, the S-Nitroso-N-Acetylvanicillamine (SNAP) component enables nitric oxide (NO) gas therapy (GT). Furthermore, when exposed to NIR-II laser light, Cu9S8 not only increases the temperature of the tumour area for PTT, but also boosts CDT and stimulates the release of NO through thermal reactions to improve the effectiveness of GT. Both in vitro and in vivo experimental results validate that C-S@P exhibits minimal side effects and represents a multifunctional nano-drug targeted at tumors for efficient treatment. This approach promises significant potential for TNBC therapy and broader applications in oncology.
Collapse
Affiliation(s)
- Danping Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaoyi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Shijie Yao
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yichen He
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Gongning Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaojuan Hu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yang Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Zhenye Lv
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
11
|
Zhang Y, Wang J. Current status and prospects of gelatin and its derivatives in oncological applications: Review. Int J Biol Macromol 2024; 274:133590. [PMID: 38996884 DOI: 10.1016/j.ijbiomac.2024.133590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Treating cancer remains challenging due to the substantial side effects and unfavourable pharmacokinetic characteristics of antineoplastic medications, despite the progress made in comprehending the properties and actions of tumour cells in recent years. The advancement of biomaterials, such as stents, implants, personalised drug delivery systems, tailored grafts, cell sheets, and other transplantable materials, has brought about a significant transformation in healthcare and medicine in recent years. Gelatin is a very adaptable natural polymer that finds extensive application in healthcare-related industries owing to its favourable characteristics, including biocompatibility, biodegradability, affordability, and the presence of accessible chemical groups. Gelatin is used as a biomaterial in the biomedical sector for the creation of drug delivery systems (DDSs) since it may be applied to various synthetic procedures. Gelatin nanoparticles (NPs) have been extensively employed as carriers for drugs and genes, specifically targeting diseased tissues such as cancer, tuberculosis, and HIV infection, as well as treating vasospasm and restenosis. This is mostly due to their biocompatibility and ability to degrade naturally. Gelatins possess a diverse array of potential applications that require more elucidation. This review focuses on the use of gelatin and its derivatives in the diagnosis and treatment of cancer. The advancement of biomaterials and bioreactors, coupled with the increasing understanding of emerging applications for biomaterials, has enabled progress in enhancing the efficacy of tumour treatment.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jia Wang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| |
Collapse
|
12
|
Grayton QE, Phan TT, Kussatz CC, Schoenfisch MH. Hyaluronic Acid-Coated Silica Nanoparticles for Targeted Delivery of Nitric Oxide to Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:3796-3809. [PMID: 38776418 PMCID: PMC11546759 DOI: 10.1021/acsabm.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Drug resistance and off-target toxicity are two of the greatest challenges to chemotherapeutic melanoma treatments. Nitric oxide (NO) represents an attractive alternative to conventional therapeutics due to its numerous anticancer properties and low probability of engendering resistance. As NO is highly reactive, macromolecular NO donors are needed for the controlled and targeted delivery of NO for therapeutic applications. Herein, mesoporous silica nanoparticles (MSNs) coated with hyaluronic acid (HA) were developed as a NO delivery system to facilitate controlled delivery to cancer cells through both passive and active targeting via the enhanced permeation and retention effect and directed binding of HA with CD44 receptors, respectively. The aminosilane modification, HA concentration, and HA molecular weight were systematically evaluated to facilitate the MSN coating and NO loading. The hydrodynamic diameter and dispersity of the nanoparticles increased after HA coating due to the hydrophilic nature of HA, with greater increases observed at higher HA molecular weight. Lower starting concentrations of HA and aminosilanes with longer alkyl chains favored more efficient HA coating. Faster NO-release kinetics and lower NO payloads were observed for the HA-coated MSNs relative to uncoated MSNs. However, the localized delivery of NO to cancer cells through the active targeting conferred by HA increased levels of oxidative stress and induced mitochondria-mediated apoptosis in melanoma cells. Cytotoxicity was also evaluated against human dermal fibroblasts, with the use of 6 kDa HA-coated MSNs resulting in the greatest therapeutic indices. Enhanced internalization of HA-coated nanoparticles into melanoma cells versus uncoated nanoparticles was visualized with confocal microscopy and quantified by fluorescence spectroscopy. In total, HA-coated MSNs represent a promising NO delivery system for potential use as a chemotherapeutic for skin melanomas.
Collapse
Affiliation(s)
- Quincy E. Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599
| | - Tien T. Phan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599
| | - Caden C. Kussatz
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill NC 27599
| |
Collapse
|
13
|
Asadi K, Heidari R, Hamidi M, Ommati MM, Yousefzadeh-Chabok S, Samiraninezhad N, Khoshneviszadeh M, Hashemzaei M, Gholami A. Trinitroglycerin-loaded chitosan nanogels: Shedding light on cytotoxicity, antioxidativity, and antibacterial activities. Int J Biol Macromol 2024; 265:130654. [PMID: 38553395 DOI: 10.1016/j.ijbiomac.2024.130654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/18/2024]
Abstract
AIM AND BACKGROUND Trinitroglycerin (TNG) is a remarkable NO-releasing agent. Here, we synthesized TNG based on chitosan Nanogels (Ngs) for ameliorating complications associated with high-dose TNG administration. METHOD TNG-Ngs fabricated through ionic-gelation technique. Fourier-transformed infrared (FT-IR), zeta-potential, dynamic light scattering (DLS), and electron microscopy techniques evaluated the physicochemical properties of TNG-Ngs. MTT was used to assess the biocompatibility of TNG-Ngs, as the antioxidative properties were determined via lactate dehydrogenase (LDH), reactive oxygen species (ROS), and lipid peroxide (LPO) assays. The antibacterial activity was evaluated against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE). RESULTS Physicochemical characterization reveals that TNG-Ngs with size diameter (96.2 ± 29 nm), polydispersity index (PDI, 0.732), and negative zeta potential (-1.1 mv) were fabricated. The encapsulation efficacy (EE) and loading capacity (LC) were obtained at 71.1 % and 2.3 %, respectively, with no considerable effect on particle size and morphology. The cytotoxicity assay demonstrated that HepG2 cells exposed to TNG-Ngs showed relative cell viability (RCV) of >80 % for 70 μg/ml compared to the TNG-free drug at the same concentration (P < 0.05). TNG-Ngs showed significant differences with the TNG-free drug for LDH, LPO, and ROS formation at the same concentration (P < 0.001). The antibacterial activity of the TNG-Ngs against S. aureus, E. coli, VRE, and MRSA was higher than the TNG-free drug and Ngs (P < 0.05). CONCLUSION TNG-Ngs with enhanced antibacterial and antioxidative activity and no obvious cytotoxicity might be afforded as novel nanoformulation for promoting NO-dependent diseases.
Collapse
Affiliation(s)
- Khatereh Asadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran; Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Hamidi
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | | | | | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Hashemzaei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Wu J, Jia J, Ji D, Jiao W, Huang Z, Zhang Y. Advances in nitric oxide regulators for the treatment of ischemic stroke. Eur J Med Chem 2023; 262:115912. [PMID: 37931330 DOI: 10.1016/j.ejmech.2023.115912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Ischemic stroke (IS) is a life-threatening disease worldwide. Nitric oxide (NO) derived from l-arginine catalyzed by NO synthase (NOS) is closely associated with IS. Three isomers of NOS (nNOS, eNOS and iNOS) produce different concentrations of NO, resulting in quite unlike effects during IS. Of them, n/iNOSs generate high levels of NO, detrimental to brain by causing nerve cell apoptosis and/or necrosis, whereas eNOS releases small amounts of NO, beneficial to the brain via increasing cerebral blood flow and improving nerve function. As a result, a large variety of NO regulators (NO donors or n/iNOS inhibitors) have been developed for fighting IS. Regrettably, up to now, no review systematically introduces the progresses in this area. This article first outlines dynamic variation rule of NOS/NO in IS, subsequently highlights advances in NO regulators against IS, and finally presents perspectives based on concentration-, site- and timing-effects of NO production to promote this field forward.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China; Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Weijie Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Zhao Z, Shan X, Zhang H, Shi X, Huang P, Sun J, He Z, Luo C, Zhang S. Nitric oxide-driven nanotherapeutics for cancer treatment. J Control Release 2023; 362:151-169. [PMID: 37633361 DOI: 10.1016/j.jconrel.2023.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule endowed with diverse biological functions, offering vast potential in the realm of cancer treatment. Considerable efforts have been dedicated to NO-based cancer therapy owing to its good biosafety and high antitumor activity, as well as its efficient synergistic therapy with other antitumor modalities. However, delivering this gaseous molecule effectively into tumor tissues poses a significant challenge. To this end, nano drug delivery systems (nano-DDSs) have emerged as promising platforms for in vivo efficient NO delivery, with remarkable achievements in recent years. This review aims to provide a summary of the emerging NO-driven antitumor nanotherapeutics. Firstly, the antitumor mechanism and related clinical trials of NO therapy are detailed. Secondly, the latest research developments in the stimulation of endogenous NO synthesis are presented, including the regulation of nitric oxide synthases (NOS) and activation of endogenous NO precursors. Moreover, the emerging nanotherapeutics that rely on tumor-specific delivery of NO donors are outlined. Additionally, NO-driven combined nanotherapeutics for multimodal cancer theranostics are discussed. Finally, the future directions, application prospects, and challenges of NO-driven nanotherapeutics in clinical translation are highlighted.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xinzhu Shan
- Department of State Key Laboratory of Natural and Biomimetic Drugs, College of Pharmaceutical Sciences, Peking University, Beijing 100871, PR China
| | - Hongyuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Peiqi Huang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
16
|
Xia Y, Xu R, Ye S, Yan J, Kumar P, Zhang P, Zhao X. Microfluidic Formulation of Curcumin-Loaded Multiresponsive Gelatin Nanoparticles for Anticancer Therapy. ACS Biomater Sci Eng 2023. [PMID: 37140447 DOI: 10.1021/acsbiomaterials.3c00318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Current anticancer research shows that a combination of multiple treatment methods can greatly improve the killing of tumor cells. Using the latest microfluidic swirl mixer technology, combined with chemotherapy and photothermal-ablation therapy, we developed multiresponsive targeted antitumor nanoparticles (NPs) made of folate-functionalized gelatin NPs under 200 nm in size and with encapsulated CuS NPs, Fe3O4 NPs, and curcumin (Cur). By exploring gelatin's structure, adjusting its concentration and pH, and fine-tuning the fluid dynamics in the microfluidic device, the best preparation conditions were obtained for gelatin NPs with an average particle size of 90 ± 7 nm. The comparative targeting of the drug delivery system (DDS) was demonstrated on lung adenocarcinoma A549 cells (low level of folate receptors) and breast adenocarcinoma MCF-7 cells (high level of folate receptors). Folic acid helps achieve targeting and accurate delivery of NPs to the MCF-7 tumor cells. The synergistic photothermal ablation and curcumin's anticancer activity are achieved through infrared light irradiation (980 nm), while Fe3O4 is guided with an external magnetic field to target gelatin NPs and accelerate the uptake of drugs, thus efficiently killing tumor cells. The method described in this work is simple, easy to repeat, and has great potential to be scaled up for industrial production and subsequent clinical use.
Collapse
Affiliation(s)
- Yu Xia
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Ruicheng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Siyuan Ye
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jiaxuan Yan
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Piyush Kumar
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Peng Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| |
Collapse
|