1
|
Kalita D, Sarma BK. Hierarchical Assemblies of Collagen-Mimetic Peptides: From a Fundamental Understanding to Developing Biomaterials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9162-9185. [PMID: 40184430 DOI: 10.1021/acs.langmuir.5c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Collagen is the most abundant protein in animals and crucial for maintaining the structural and functional integrity of the extracellular matrix. Its primary structure consists of ∼300 repeats of the Xaa-Yaa-Gly triplet, where Xaa and Yaa are often proline (Pro) and 4-(R)-hydroxyproline (Hyp) residues, respectively. Collagen is fundamentally a right-handed triple helix that undergoes self-association, forming complex supramolecular structures in the body. Despite extensive study, the detailed mechanisms behind its higher-order assembly remain unclear due to challenges in its purification and the extensive post-translational modifications that it undergoes. To better understand the molecular aspects of collagen's complex structure, researchers developed collagen-mimetic peptides (CMPs)─short peptides composed of 7-17 Xaa-Yaa-Gly triplets─easily synthesized in the laboratory. Over the years, research on CMPs has provided significant insights into the formation and stability of the collagen triple helix. However, creating multihierarchical self-assembled structures beyond the triple helix remains challenging. Recently, various strategies such as covalent linkages, salt-bridge interactions, incorporation of hydrophobic groups, metal-coordinated assembly, and coassembly with foreign partners have been employed to design higher-order CMP assemblies. These innovations have led to the creation of fibers, 2D sheets, wires, and spherical micelles. This progress has paved the way for the rational design of novel peptide-based biomaterials, which may offer advantages over animal-derived collagen, including the absence of potential allergens and contaminants. This review highlights recent advancements in CMP assembly design, discussing the principles, challenges, and prospects of these biomaterials in clinical applications.
Collapse
Affiliation(s)
- Debajit Kalita
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, KA 560064, India
| | - Bani Kanta Sarma
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, KA 560064, India
| |
Collapse
|
2
|
Malcor JD, Mallein-Gerin F. Biomaterial functionalization with triple-helical peptides for tissue engineering. Acta Biomater 2022; 148:1-21. [PMID: 35675889 DOI: 10.1016/j.actbio.2022.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
In the growing field of tissue engineering, providing cells in biomaterials with the adequate biological cues represents an increasingly important challenge. Yet, biomaterials with excellent mechanical properties often are often biologically inert to many cell types. To address this issue, researchers resort to functionalization, i.e. the surface modification of a biomaterial with active molecules or substances. Functionalization notably aims to replicate the native cellular microenvironment provided by the extracellular matrix, and in particular by collagen, its major component. As our understanding of biological processes regulating cell behaviour increases, functionalization with biomolecules binding cell surface receptors constitutes a promising strategy. Amongst these, triple-helical peptides (THPs) that reproduce the architectural and biological properties of collagen are especially attractive. Indeed, THPs containing binding sites from the native collagen sequence have successfully been used to guide cell response by establishing cell-biomaterial interactions. Notably, the GFOGER motif recognising the collagen-binding integrins is extensively employed as a cell adhesive peptide. In biomaterials, THPs efficiently improved cell adhesion, differentiation and function on biomaterials designed for tissue repair (especially for bone, cartilage, tendon and heart), vascular graft fabrication, wound dressing, drug delivery or immunomodulation. This review describes the key characteristics of THPs, their effect on cells when combined to biomaterials and their strong potential as biomimetic tools for regenerative medicine. STATEMENT OF SIGNIFICANCE: This review article describes how triple-helical peptides constitute efficient tools to improve cell-biomaterial interactions in tissue engineering. Triple helical peptides are bioactive molecules that mimic the architectural and biological properties of collagen. They have been successfully used to specifically recognize cell-surface receptors and provide cells seeded on biomaterials with controlled biological cues. Functionalization with triple-helical peptides has enabled researchers to improve cell function for regenerative medicine applications, such as tissue repair. However, despite encouraging results, this approach remains limited and under-exploited, and most functionalization strategies reported in the literature rely on biomolecules that are unable to address collagen-binding receptors. This review will assist researchers in selecting the correct tools to functionalize biomaterials in efforts to guide cellular response.
Collapse
Affiliation(s)
- Jean-Daniel Malcor
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France.
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France
| |
Collapse
|
3
|
Taylor PA, Kloxin AM, Jayaraman A. Impact of collagen-like peptide (CLP) heterotrimeric triple helix design on helical thermal stability and hierarchical assembly: a coarse-grained molecular dynamics simulation study. SOFT MATTER 2022; 18:3177-3192. [PMID: 35380571 PMCID: PMC9909704 DOI: 10.1039/d2sm00087c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Collagen-like peptides (CLP) are multifunctional materials garnering a lot of recent interest from the biomaterials community due to their hierarchical assembly and tunable physicochemical properties. In this work, we present a computational study that links the design of CLP heterotrimers to the thermal stability of the triple helix and their self-assembly into fibrillar aggregates and percolated networks. Unlike homotrimeric helices, the CLP heterotrimeric triple helices in this study are made of CLP strands of different chain lengths that result in 'sticky' ends with available hydrogen bonding groups. These 'sticky' ends at one end or both ends of the CLP heterotrimer then facilitate inter-helix hydrogen bonding leading to self-assembly into fibrils (clusters) and percolated networks. We consider the cases of three sticky end lengths - two, four, and six repeat units - present entirely on one end or split between two ends of the CLP heterotrimer. We observe in CLP heterotrimer melting curves generated using coarse grained Langevin dynamics simulations at low CLP concentration that increasing sticky end length results in lower melting temperatures for both one and two sticky ended CLP designs. At higher CLP concentrations, we observe non-monotonic trends in cluster sizes with increasing sticky end length with one sticky end but not for two sticky ends with the same number of available hydrogen bonding groups as the one sticky end; this nonmonotonicity stems from the formation of turn structures stabilized by hydrogen bonds at the single, sticky end for sticky end lengths greater than four repeat units. With increasing CLP concentration, heterotrimers also form percolated networks with increasing sticky end length with a minimum sticky end length of four repeat units required to observe percolation. Overall, this work informs the design of thermoresponsive, peptide-based biomaterials with desired morphologies using strand length and dispersity as a handle for tuning thermal stability and formation of supramolecular structures.
Collapse
Affiliation(s)
- Phillip A Taylor
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
4
|
Hulgan SAH, Hartgerink JD. Recent Advances in Collagen Mimetic Peptide Structure and Design. Biomacromolecules 2022; 23:1475-1489. [PMID: 35258280 DOI: 10.1021/acs.biomac.2c00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Collagen mimetic peptides (CMPs) fold into a polyproline type II triple helix, allowing the study of the structure and function (or misfunction) of the collagen family of proteins. This Perspective will focus on recent developments in the use of CMPs toward understanding the structure and controlling the stability of the triple helix. Triple helix assembly is influenced by various factors, including the single amino acid propensity for the triple helix fold, pairwise interactions between these amino acids, and long-range effects observed across the helix, such as bend, twist, and fraying. Important progress in creating a comprehensive and predictive understanding of these factors for peptides with exclusively natural amino acids has been made. In contrast, several groups have successfully developed unnatural amino acids that are engineered to stabilize the triple helical structure. A third approach to controlling the triple helical structure includes covalent cross-linking of the triple helix to stabilize the assembly, which eliminates the problematic equilibrium of unfolding into monomers and enforces compositional control. Advances in all these areas have resulted in significant improvements to our understanding and control of this important class of protein, allowing for the design and application of more chemically complex and well-controlled collagen mimetic biomaterials.
Collapse
Affiliation(s)
- Sarah A H Hulgan
- Rice University, Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D Hartgerink
- Rice University, Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Gleaton J, Curtis RW, Chmielewski J. Formation of Microcages from a Collagen Mimetic Peptide via Metal-Ligand Interactions. Molecules 2021; 26:molecules26164888. [PMID: 34443477 PMCID: PMC8401520 DOI: 10.3390/molecules26164888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Here, the hierarchical assembly of a collagen mimetic peptide (CMP) displaying four bipyridine moieties is described. The CMP was capable of forming triple helices followed by self-assembly into disks and domes. Treatment of these disks and domes with metal ions such as Fe(II), Cu(II), Zn(II), Co(II), and Ru(III) triggered the formation of microcages, and micron-sized cup-like structures. Mechanistic studies suggest that the formation of the microcages proceeds from the disks and domes in a metal-dependent fashion. Fluorescently-labeled dextrans were encapsulated within the cages and displayed a time-dependent release using thermal conditions.
Collapse
|
6
|
Curtis RW, Chmielewski J. A comparison of the collagen triple helix and
coiled‐coil
peptide building blocks on metal
ion‐mediated
supramolecular assembly. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ryan W. Curtis
- Department of Chemistry Purdue University West Lafayette Indiana USA
| | - Jean Chmielewski
- Department of Chemistry Purdue University West Lafayette Indiana USA
| |
Collapse
|
7
|
Madhanagopal B, More SH, Bansode ND, Ganesh KN. Conformation and Morphology of 4-(NH 2/OH)-Substituted l/d-Prolyl Polypeptides: Effect of Homo- and Heterochiral Backbones on Formation of β-Structures and Nanofibers. ACS OMEGA 2020; 5:21781-21795. [PMID: 32905392 PMCID: PMC7469381 DOI: 10.1021/acsomega.0c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
The relative stereochemistry of C2 and C4 in 4-substituted prolyl polypeptides plays an important role in defining the derived conformation in solution. cis-(2S,4S)-Amino/hydroxy-l-prolyl polypeptide (lC-Amp 9/lC-Hyp 9) shows a PPII conformation in phosphate buffer and a β-structure in a relatively hydrophobic solvent, trifluoroethanol (TFE). It is now demonstrated that the homochiral enantiomeric cis-substituted d-prolyl polypeptide (dC-Amp 9/dC-Hyp 9) exhibits mirror image β-structures in TFE. In the case of alternating heterochiral prolyl peptides, it is the trans-substituted [lT(2S,4R)-dT(2R,4S)] n prolyl polypeptide that shows β-structures in TFE, while the cis-substituted [lC(2S,4S)-dC(2R,4R)] n prolyl polypeptide is disordered in both phosphate buffer and TFE. The results highlight the important chirality-specific structural requirements for β-structure formation. The observed conformation in solution (circular dichroism (CD)) is also correlated with the morphology of the self-assemblies (field emission scanning electron microscopy (FESEM)), with the PPII form leading to spherical nanoparticles and β-structures leading to nanofiber formation. The results shed light on the role of relative stereochemistry at C2 and C4 in defining the polyproline peptide conformation in solution and how different conformations drive self-assemblies of peptides toward specific nanostructures.
Collapse
Affiliation(s)
- Bharath
Raj Madhanagopal
- Indian
Institute of Science Education and Research (IISER), Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
| | - Shahaji H. More
- Indian
Institute of Science Education and Research (IISER), Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
| | - Nitin D. Bansode
- LCPO,
ENSCBP, UMR 5629, University of Bordeaux, Pessac 33600, France
| | - Krishna N. Ganesh
- Indian
Institute of Science Education and Research (IISER), Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
- Indian
Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
8
|
Wang T, Yang Y, Feng W, Wang R, Chen Z. Co-folding of hydrophobic rice proteins and shellac in hydrophilic binary microstructures for cellular uptake of apigenin. Food Chem 2020; 309:125695. [DOI: 10.1016/j.foodchem.2019.125695] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
|
9
|
Nambiar M, Wang LS, Rotello V, Chmielewski J. Reversible Hierarchical Assembly of Trimeric Coiled-Coil Peptides into Banded Nano- and Microstructures. J Am Chem Soc 2018; 140:13028-13033. [DOI: 10.1021/jacs.8b08163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monessha Nambiar
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Li-Sheng Wang
- Department of Chemistry, University of Massachusetts−Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01002, United States
| | - Vincent Rotello
- Department of Chemistry, University of Massachusetts−Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01002, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
10
|
Ting YH, Chen HJ, Cheng WJ, Horng JC. Zinc(II)–Histidine Induced Collagen Peptide Assemblies: Morphology Modulation and Hydrolytic Catalysis Evaluation. Biomacromolecules 2018; 19:2629-2637. [DOI: 10.1021/acs.biomac.8b00247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Banerjee J, Azevedo HS. Crafting of functional biomaterials by directed molecular self-assembly of triple helical peptide building blocks. Interface Focus 2017; 7:20160138. [PMID: 29147553 PMCID: PMC5665793 DOI: 10.1098/rsfs.2016.0138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Collagen is the most abundant extracellular matrix protein in the body and has widespread use in biomedical research, as well as in clinics. In addition to difficulties in the production of recombinant collagen due to its high non-natural imino acid content, animal-derived collagen imposes several major drawbacks-variability in composition, immunogenicity, pathogenicity and difficulty in sequence modification-that may limit its use in the practical scenario. However, in recent years, scientists have shifted their attention towards developing synthetic collagen-like materials from simple collagen model triple helical peptides to eliminate the potential drawbacks. For this purpose, it is highly desirable to develop programmable self-assembling strategies that will initiate the hierarchical self-assembly of short peptides into large-scale macromolecular assemblies with recommendable bioactivity. Herein, we tried to elaborate our understanding related to the strategies that have been adopted by few research groups to trigger self-assembly in the triple helical peptide system producing fascinating supramolecular structures. We have also touched upon the major epitopes within collagen that can be incorporated into collagen mimetic peptides for promoting bioactivity.
Collapse
Affiliation(s)
| | - Helena S. Azevedo
- School of Engineering and Material Science, Institute of Bioengineering, University of London, Queen Mary, Mile End Road, London E1 4NS, UK
| |
Collapse
|
12
|
San BH, Hwang J, Sampath S, Li Y, Bennink LL, Yu SM. Self-Assembled Water-Soluble Nanofibers Displaying Collagen Hybridizing Peptides. J Am Chem Soc 2017; 139:16640-16649. [PMID: 29091434 DOI: 10.1021/jacs.7b07900] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Collagen hybridizing peptides (CHP) have been demonstrated as a powerful vehicle for targeting denatured collagen (dColl) produced by disease or injury. Conjugation of β-sheet peptide motif to the CHP results in self-assembly of nonaggregating β-sheet nanofibers with precise structure. Due to the molecular architecture of the nanofibers which puts high density of hydrophilic CHPs on the nanofiber surface at fixed distance, the nanofibers exhibit high water solubility, without any signs of intramolecular triple helix formation or fiber-fiber aggregation. Other molecules that are flanked with the triple helical forming GlyProHyp repeats can readily bind to the nanofibers by triple helical folding, allowing facile display of bioactive molecules at high density. In addition, the multivalency of CHPs allows the nanofibers to bind to dColl in vitro and in vivo with extraordinary affinity, particularly without preactivation that unravels the CHP homotrimers. The length of the nanofibers can be tuned from micrometers down to 100 nm by simple heat treatment, and when injected intravenously into mice, the small nanofibers can specifically target dColl in the skeletal tissues with little target-associated signals in the skin and other organs. The CHP nanofibers can be a useful tool for detecting and capturing dColl, understanding how ECM remodelling impacts disease progression, and development of new delivery systems that target such diseases.
Collapse
Affiliation(s)
- Boi Hoa San
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | - Jeongmin Hwang
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | - Sujatha Sampath
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | - Yang Li
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | - Lucas L Bennink
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | - S Michael Yu
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| |
Collapse
|
13
|
Abstract
Collagen-like peptides (CLPs), also known as collagen-mimetic peptides (CMPs), are short synthetic peptides that mimic the triple helical conformation of native collagens. Traditionally, CLPs have been widely used in deciphering the chemical basis for collagen triple helix stabilization, mimicking collagen fibril formation and fabricating other higher-order supramolecular self-assemblies. While CLPs have been used extensively for elucidation of the assembly of native collagens, less work has been reported on the use of CLP-polymer and CLP-peptide conjugates in the production of responsive assemblies. CLP triple helices have been used as physical cross-links in CLP-polymer hydrogels with predesigned thermoresponsiveness. The more recently reported ability of CLP to target native collagens via triple helix hybridization has further inspired the production of CLP-polymer and CLP-peptide bioconjugates and the employment of these conjugates in generating well-defined nanostructures for targeting collagen substrates. This review summarizes the current progress and potential of using CLPs in biomedical arenas and is intended to serve as a general guide for designing CLP-containing biomaterials.
Collapse
Affiliation(s)
| | - Kristi L Kiick
- Delaware Biotechnology Institute , Newark, Delaware 19711, United States
| |
Collapse
|
14
|
Strauss K, Chmielewski J. Advances in the design and higher-order assembly of collagen mimetic peptides for regenerative medicine. Curr Opin Biotechnol 2017; 46:34-41. [PMID: 28126669 DOI: 10.1016/j.copbio.2016.10.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
Regenerative medicine makes use of cell-supporting biomaterials to replace lost or damaged tissue. Collagen holds great potential in this regard caused by its biocompatibility and structural versatility. While natural collagen has shown promise for regenerative medicine, collagen mimetic peptides (CMPs) have emerged that allow far higher degrees of customization and ease of preparation. A wide range of two and three-dimensional assemblies have been generated from CMPs, many of which accommodate cellular adhesion and encapsulation, through careful sequence design and the exploitation of electrostatic and hydrophobic forces. But the methodology that has generated the greatest plethora of viable biomaterials is metal-promoted assembly of CMP triple helices-a rapid process that occurs under physiological conditions. Architectures generated in this manner promote cell growth, enable directed attachment of bioactive cargo, and produce living tissue.
Collapse
Affiliation(s)
- Kevin Strauss
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
15
|
Strauss K, Chmielewski J. Metal-Promoted Assembly of Two Collagen Mimetic Peptides into a Biofunctional "Spiraled Horn" Scaffold. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E838. [PMID: 28773959 PMCID: PMC5456626 DOI: 10.3390/ma9100838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022]
Abstract
Biofunctional scaffolds for the delivery of living cells are of the utmost importance for regenerative medicine. Herein, a novel, robust "spiraled horn" scaffold was elucidated through the Co2+-promoted hierarchical assembly of two collagen mimetic peptides, NCoH and HisCol. Each "horn" displayed a periodic banding pattern with band lengths corresponding to the length of the collagen peptide triple helix. Strand exchange between the two peptide trimers resulted in failure to form this intricate morphology, lending support to a precise metal-ligand-based mechanism of assembly. Little change occurred to the observed morphology when the Co2+ concentration was varied from 0.5 to 4.0 mM, and the scaffold was found to be fully formed within two minutes of exposure to the metal ion. The horned network also displayed biological functionality by binding to a His-tagged fluorophore and associating with cells.
Collapse
Affiliation(s)
- Kevin Strauss
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|