1
|
Quan MC, Mai DJ. Biomolecular Actuators for Soft Robots. Chem Rev 2025; 125:4974-5002. [PMID: 40331746 DOI: 10.1021/acs.chemrev.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Biomolecules present promising stimuli-responsive mechanisms to revolutionize soft actuators. Proteins, peptides, and nucleic acids foster specific intermolecular interactions, and their boundless sequence design spaces encode precise actuation capabilities. Drawing inspiration from nature, biomolecular actuators harness existing stimuli-responsive properties to meet the needs of diverse applications. This review features biomolecular actuators that respond to a wide variety of stimuli to drive both user-directed and autonomous actuation. We discuss how advances in biomaterial fabrication accelerate prototyping of precise, custom actuators, and we identify biomolecules with untapped actuation potential. Finally, we highlight opportunities for multifunctional and reconfigurable biomolecules to improve the versatility and sustainability of next-generation soft actuators.
Collapse
Affiliation(s)
- Michelle C Quan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Katrantzi D, Micklethwaite S, Hondow N, Brown A, Dougan L. Unveiling the structure of protein-based hydrogels by overcoming cryo-SEM sample preparation challenges. Faraday Discuss 2025. [PMID: 40400330 DOI: 10.1039/d4fd00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Protein-based hydrogels have gained significant attention for their potential use in applications such as drug delivery and tissue engineering. Their internal structure is complex, spans across multiple length scales and affects their functionality, yet is not well understood because of folded proteins' sensitivity to physical and chemical perturbations and the high water content of hydrogels. Cryo-scanning electron microscopy (cryo-SEM) has the potential to reveal such hierarchical structure when hydrated hydrogels are prepared with appropriate cryofixation. We show for photochemically cross-linked, folded globular bovine serum albumin (BSA) protein hydrogels that preparation artefacts are reduced by in situ gelation, high pressure freezing (HPF), plasma focused ion beam (pFIB) milling, sublimation, and low dose secondary electron imaging. Cryo-SEM of folded BSA protein hydrogels prepared in this way reveals a heterogeneous network with nanoscale porosity (∼60 nm pores) surrounded by high secondary electron emission regions (∼30 nm diameter) interconnected by narrower, lower emission regions (∼20 nm length). This heterogeneous network structure is consistent with small angle scattering studies of folded protein hydrogels, with fractal-like clusters connected by intercluster regions. We further test the potential of cryo-SEM to detect the impact of protein unfolding on hydrogel network formation and reveal nanoscale differences in cluster sizes consistent with those derived from scattering data. Importantly, cryo-SEM directly images pores for sizing in both systems, with initial results on BSA suggesting protein unfolding induces an increase of ∼10 nm in pore sizes. Our findings on cryo-SEM sample preparation challenges and solutions provide new opportunities to link hydrogel structure to function.
Collapse
Affiliation(s)
- Dimitra Katrantzi
- School of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, UK.
| | - Stuart Micklethwaite
- School of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, UK.
| | - Nicole Hondow
- School of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, UK.
| | - Andy Brown
- School of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, UK.
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, UK.
| |
Collapse
|
3
|
Hughes MDG, Cussons S, Borumand A, Tyler AII, Brockwell DJ, Dougan L. Capturing the impact of protein unfolding on the dynamic assembly of protein networks. SOFT MATTER 2025; 21:1748-1759. [PMID: 39930881 DOI: 10.1039/d4sm01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The rapid assembly of molecular or nanoscale building blocks into extended arrays is crucial to the construction of functional networks in vivo and in vitro and depends on various factors. One factor seldom considered is the dynamic changes of the building block shape. Folded protein building blocks offer a unique system to investigate dynamic shape changes due to their intrinsic ability to change from a compact and specific folded structure to an extended unfolded structure in response to a perturbation such as force. Here, we use photochemically crosslinked folded protein hydrogels constructed from force labile protein building blocks as a model dynamic shape-changing network system and characterise them by combining time-resolved rheology and small-angle X-ray scattering (SAXS). This approach probes both the load-bearing network structures, using rheology, and network architectures, using SAXS, thereby providing a crosslength scale understanding of the network formation. We propose a triple assembly model for the structural evolution of networks constructed from force labile protein building block consisting of: primary formation where monomeric folded proteins create the preliminary protein network scaffold; a subsequent secondary formation phase, where larger oligomers of protein diffuse to join the preliminary network scaffold; and finally in situ unfolding and relaxation which leads to the mature network structure of connected larger and denser fractal-like clusters. The time-resolved SAXS data provides evidence that protein unfolding occurs on the edges of the fractal-like clusters, resulting in a population of unfolded proteins in the space between clusters. Identifying the key stages of assembly in protein networks constructed from force labile proteins provides a greater understanding of the importance of protein unfolding in hierarchical biomechanics in vivo and creates future opportunities to develop bespoke biomaterials for novel biomedical applications.
Collapse
Affiliation(s)
- Matt D G Hughes
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, UK.
| | - Sophie Cussons
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Ahmad Borumand
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, UK.
| | - Arwen I I Tyler
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| |
Collapse
|
4
|
Visan AI, Negut I. Environmental and Wastewater Treatment Applications of Stimulus-Responsive Hydrogels. Gels 2025; 11:72. [PMID: 39852043 PMCID: PMC11765053 DOI: 10.3390/gels11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Stimulus-responsive hydrogels have emerged as versatile materials for environmental and wastewater treatment applications due to their ability to adapt to changing environmental conditions. This review highlights recent advances in the design, synthesis, and functionalization of such hydrogels, focusing on their environmental applications. Various synthesis techniques, including radical polymerization, grafting, and copolymerization, enable the development of hydrogels with tailored properties such as enhanced adsorption capacity, selectivity, and reusability. The incorporation of nanoparticles and bio-based polymers further improves their structural integrity and pollutant removal efficiency. Key mechanisms such as adsorption, ion exchange, and photodegradation are discussed, emphasizing their roles in removing heavy metals, dyes, and organic pollutants from wastewater. Additionally, this review presents the potential of hydrogels for oil-water separation, pathogen control, and future sustainability through integration into circular economy frameworks. The adaptability, cost-effectiveness, and eco-friendliness of these hydrogels make them promising candidates for large-scale environmental remediation.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania;
| |
Collapse
|
5
|
Hughes MDG, West D, Wurr R, Cussons S, Cook KR, Mahmoudi N, Head D, Brockwell DJ, Dougan L. Competition between cross-linking and force-induced local conformational changes determines the structure and mechanics of labile protein networks. J Colloid Interface Sci 2025; 678:1259-1269. [PMID: 39357245 DOI: 10.1016/j.jcis.2024.09.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Folded protein hydrogels are emerging as promising new materials for medicine and healthcare applications. Folded globular proteins can be modelled as colloids which exhibit site specific cross-linking for controlled network formation. However, folded proteins have inherent mechanical stability and unfolded in response to an applied force. It is not yet understood how colloidal network theory maps onto folded protein hydrogels and whether it models the impact of protein unfolding on network properties. To address this, we study a hybrid system which contains folded proteins (patchy colloids) and unfolded proteins (biopolymers). We use a model protein, bovine serum albumin (BSA), to explore network architecture and mechanics in folded protein hydrogels. We alter both the photo-chemical cross-linking reaction rate and the mechanical properties of the protein building block, via illumination intensity and redox removal of robust intra-protein covalent bonds, respectively. This dual approach, in conjunction with rheological and structural techniques, allows us to show that while reaction rate can 'fine-tune' the mechanical and structural properties of protein hydrogels, it is the force-lability of the protein which has the greatest impact on network architecture and rigidity. To understand these results, we consider a colloidal model which successfully describes the behaviour of the folded protein hydrogels but cannot account for the behaviour observed in force-labile hydrogels containing unfolded protein. Alternative models are needed which combine the properties of colloids (folded proteins) and biopolymers (unfolded proteins) in cross-linked networks. This work provides important insights into the accessible design space of folded protein hydrogels without the need for complex and costly protein engineering, aiding the development of protein-based biomaterials.
Collapse
Affiliation(s)
- Matt D G Hughes
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, UK
| | - Daniel West
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, UK
| | - Rebecca Wurr
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, UK; Department of Physics, King's College London, London, WC2R 2LS, UK
| | - Sophie Cussons
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Kalila R Cook
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, UK
| | - Najet Mahmoudi
- ISIS Neutron and Muon Spallation Source, STFC Rutherford Appleton Laboratory, Oxfordshire, UK
| | - David Head
- School of Computer Science, Faculty of Engineering and Physical Science, University of Leeds, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, UK.
| |
Collapse
|
6
|
Hughes MDG, Cook KR, Cussons S, Boroumand A, Tyler AII, Head D, Brockwell DJ, Dougan L. Capturing Dynamic Assembly of Nanoscale Proteins During Network Formation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407090. [PMID: 39533485 PMCID: PMC11707584 DOI: 10.1002/smll.202407090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The structural evolution of hierarchical structures of nanoscale biomolecules is crucial for the construction of functional networks in vivo and in vitro. Despite the ubiquity of these networks, the physical mechanisms behind their formation and self-assembly remains poorly understood. Here, this study uses photochemically cross-linked folded protein hydrogels as a model biopolymer network system, with a combined time-resolved rheology and small-angle x-ray scattering (SAXS) approach to probe both the load-bearing structures and network architectures respectively thereby providing a cross-length scale understanding of the network formation. Combining SAXS, rheology, and kinetic modeling, a dual formation mechanism consisting of a primary formation phase is proposed, where monomeric folded proteins create the preliminary protein network scaffold; and a subsequent secondary formation phase, where both additional intra-network cross-links form and larger oligomers diffuse to join the preliminary network, leading to a denser more mechanically robust structure. Identifying this as the origin of the structural and mechanical properties of protein networks creates future opportunities to understand hierarchical biomechanics in vivo and develop functional, designed-for-purpose, biomaterials.
Collapse
Affiliation(s)
- Matt D G Hughes
- School of Physics and AstronomyFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Kalila R Cook
- School of Physics and AstronomyFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Sophie Cussons
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Ahmad Boroumand
- School of Physics and AstronomyFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Arwen I I Tyler
- School of Food Science and NutritionFaculty of EnvironmentUniversity of LeedsLeedsLS2 9JTUK
| | - David Head
- School of Computer ScienceFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - David J Brockwell
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Lorna Dougan
- School of Physics and AstronomyFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
7
|
Liu Y, Gilchrist AE, Heilshorn SC. Engineered Protein Hydrogels as Biomimetic Cellular Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407794. [PMID: 39233559 PMCID: PMC11573243 DOI: 10.1002/adma.202407794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/01/2024] [Indexed: 09/06/2024]
Abstract
The biochemical and biophysical properties of the extracellular matrix (ECM) play a pivotal role in regulating cellular behaviors such as proliferation, migration, and differentiation. Engineered protein-based hydrogels, with highly tunable multifunctional properties, have the potential to replicate key features of the native ECM. Formed by self-assembly or crosslinking, engineered protein-based hydrogels can induce a range of cell behaviors through bioactive and functional domains incorporated into the polymer backbone. Using recombinant techniques, the amino acid sequence of the protein backbone can be designed with precise control over the chain-length, folded structure, and cell-interaction sites. In this review, the modular design of engineered protein-based hydrogels from both a molecular- and network-level perspective are discussed, and summarize recent progress and case studies to highlight the diverse strategies used to construct biomimetic scaffolds. This review focuses on amino acid sequences that form structural blocks, bioactive blocks, and stimuli-responsive blocks designed into the protein backbone for highly precise and tunable control of scaffold properties. Both physical and chemical methods to stabilize dynamic protein networks with defined structure and bioactivity for cell culture applications are discussed. Finally, a discussion of future directions of engineered protein-based hydrogels as biomimetic cellular scaffolds is concluded.
Collapse
Affiliation(s)
- Yueming Liu
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Aidan E Gilchrist
- Department of Biomedical Engineering, University of California, Davis 451 Health Sciences Dr, GBSF 3315, Davis, CA, 95616, USA
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, 476 Lomita Mall, McCullough Room 246, Stanford, CA, 94305, USA
| |
Collapse
|
8
|
Lu Y, Chen Y, Zhu Y, Zhao J, Ren K, Lu Z, Li J, Hao Z. Stimuli-Responsive Protein Hydrogels: Their Design, Properties, and Biomedical Applications. Polymers (Basel) 2023; 15:4652. [PMID: 38139904 PMCID: PMC10747532 DOI: 10.3390/polym15244652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Protein-based hydrogels are considered ideal biomaterials due to their high biocompatibility, diverse structure, and their improved bioactivity and biodegradability. However, it remains challenging to mimic the native extracellular matrices that can dynamically respond to environmental stimuli. The combination of stimuli-responsive functionalities with engineered protein hydrogels has facilitated the development of new smart hydrogels with tunable biomechanics and biological properties that are triggered by cyto-compatible stimuli. This review summarizes the recent advancements of responsive hydrogels prepared from engineered proteins and integrated with physical, chemical or biological responsive moieties. We underscore the design principles and fabrication approaches of responsive protein hydrogels, and their biomedical applications in disease treatment, drug delivery, and tissue engineering are briefly discussed. Finally, the current challenges and future perspectives in this field are highlighted.
Collapse
Affiliation(s)
- Yuxuan Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.L.); (Y.C.)
| | - Yuhe Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.L.); (Y.C.)
| | - Yuhan Zhu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Jingyi Zhao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Ketong Ren
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Zhao Lu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Jun Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Ziyang Hao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| |
Collapse
|
9
|
Phogat S, Thiam F, Al Yazeedi S, Abokor FA, Osei ET. 3D in vitro hydrogel models to study the human lung extracellular matrix and fibroblast function. Respir Res 2023; 24:242. [PMID: 37798767 PMCID: PMC10552248 DOI: 10.1186/s12931-023-02548-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
The pulmonary extracellular matrix (ECM) is a macromolecular structure that provides mechanical support, stability and elastic recoil for different pulmonary cells including the lung fibroblasts. The ECM plays an important role in lung development, remodeling, repair, and the maintenance of tissue homeostasis. Biomechanical and biochemical signals produced by the ECM regulate the phenotype and function of various cells including fibroblasts in the lungs. Fibroblasts are important lung structural cells responsible for the production and repair of different ECM proteins (e.g., collagen and fibronectin). During lung injury and in chronic lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), an abnormal feedback between fibroblasts and the altered ECM disrupts tissue homeostasis and leads to a vicious cycle of fibrotic changes resulting in tissue remodeling. In line with this, using 3D hydrogel culture models with embedded lung fibroblasts have enabled the assessment of the various mechanisms involved in driving defective (fibrotic) fibroblast function in the lung's 3D ECM environment. In this review, we provide a summary of various studies that used these 3D hydrogel models to assess the regulation of the ECM on lung fibroblast phenotype and function in altered lung ECM homeostasis in health and in chronic respiratory disease.
Collapse
Affiliation(s)
- Sakshi Phogat
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Fama Thiam
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Safiya Al Yazeedi
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Filsan Ahmed Abokor
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Emmanuel Twumasi Osei
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
10
|
Aufderhorst-Roberts A, Cussons S, Brockwell DJ, Dougan L. Diversity of viscoelastic properties of an engineered muscle-inspired protein hydrogel. SOFT MATTER 2023; 19:3167-3178. [PMID: 37067782 DOI: 10.1039/d2sm01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Folded protein hydrogels are prime candidates as tuneable biomaterials but it is unclear to what extent their mechanical properties have mesoscopic, as opposed to molecular origins. To address this, we probe hydrogels inspired by the muscle protein titin and engineered to the polyprotein I275, using a multimodal rheology approach. Across multiple protocols, the hydrogels consistently exhibit power-law viscoelasticity in the linear viscoelastic regime with an exponent β = 0.03, suggesting a dense fractal meso-structure, with predicted fractal dimension df = 2.48. In the nonlinear viscoelastic regime, the hydrogel undergoes stiffening and energy dissipation, indicating simultaneous alignment and unfolding of the folded proteins on the nanoscale. Remarkably, this behaviour is highly reversible, as the value of β, df and the viscoelastic moduli return to their equilibrium value, even after multiple cycles of deformation. This highlights a previously unrevealed diversity of viscoelastic properties that originate on both at the nanoscale and the mesoscopic scale, providing powerful opportunities for engineering novel biomaterials.
Collapse
Affiliation(s)
- Anders Aufderhorst-Roberts
- Department of Physics, Centre for Materials Physics, University of Durham, Durham, DH1 3LE, UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sophie Cussons
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Brown CP, Hughes MDG, Mahmoudi N, Brockwell DJ, Coletta PL, Peyman S, Evans SD, Dougan L. Structural and mechanical properties of folded protein hydrogels with embedded microbubbles. Biomater Sci 2023; 11:2726-2737. [PMID: 36815670 PMCID: PMC10088474 DOI: 10.1039/d2bm01918c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Globular folded proteins are powerful building blocks to create biomaterials with mechanical robustness and inherent biological functionality. Here we explore their potential as advanced drug delivery scaffolds, by embedding microbubbles (MBs) within a photo-activated, chemically cross-linked bovine serum albumin (BSA) protein network. Using a combination of circular dichroism (CD), rheology, small angle neutron scattering (SANS) and microscopy we determine the nanoscale and mesoscale structure and mechanics of this novel multi-composite system. Optical and confocal microscopy confirms the presence of MBs within the protein hydrogel, their reduced diffusion and their effective rupture using ultrasound, a requirement for burst drug release. CD confirms that the inclusion of MBs does not impact the proportion of folded proteins within the cross-linked protein network. Rheological characterisation demonstrates that the mechanics of the BSA hydrogels is reduced in the presence of MBs. Furthermore, SANS reveals that embedding MBs in the protein hydrogel network results in a smaller number of clusters that are larger in size (∼16.6% reduction in number of clusters, 17.4% increase in cluster size). Taken together, we show that MBs can be successfully embedded within a folded protein network and ruptured upon application of ultrasound. The fundamental insight into the impact of embedded MBs in protein scaffolds at the nanoscale and mesoscale is important in the development of future platforms for targeted and controlled drug delivery applications.
Collapse
Affiliation(s)
- Christa P Brown
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Matt D G Hughes
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Najet Mahmoudi
- ISIS Neutron and Muon Spallation Source, STFC Rutherford Appleton Laboratory, Oxfordshire, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - P Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Sally Peyman
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Stephen D Evans
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
12
|
Nikfarjam S, Gibbons R, Burni F, Raghavan SR, Anisimov MA, Woehl TJ. Chemically Fueled Dissipative Cross-Linking of Protein Hydrogels Mediated by Protein Unfolding. Biomacromolecules 2023; 24:1131-1140. [PMID: 36795055 DOI: 10.1021/acs.biomac.2c01186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cells assemble dynamic protein-based nanostructures far from equilibrium, such as microtubules, in a process referred to as dissipative assembly. Synthetic analogues have utilized chemical fuels and reaction networks to form transient hydrogels and molecular assemblies from small molecule or synthetic polymer building blocks. Here, we demonstrate dissipative cross-linking of transient protein hydrogels using a redox cycle, which exhibit protein unfolding-dependent lifetimes and mechanical properties. Fast oxidation of cysteine groups on bovine serum albumin by hydrogen peroxide, the chemical fuel, formed transient hydrogels with disulfide bond cross-links that degraded over hours by a slow reductive back reaction. Interestingly, despite increased cross-linking, the hydrogel lifetime decreased as a function of increasing denaturant concentration. Experiments showed that the solvent-accessible cysteine concentration increased with increasing denaturant concentration due to unfolding of secondary structures. The increased cysteine concentration consumed more fuel, which led to less direction oxidation of the reducing agent and affected a shorter hydrogel lifetime. Increased hydrogel stiffness, disulfide cross-linking density, and decreased oxidation of redox-sensitive fluorescent probes at a high denaturant concentration provided evidence supporting the unveiling of additional cysteine cross-linking sites and more rapid consumption of hydrogen peroxide at higher denaturant concentrations. Taken together, the results indicate that the protein secondary structure mediated the transient hydrogel lifetime and mechanical properties by mediating the redox reactions, a feature unique to biomacromolecules that exhibit a higher order structure. While prior works have focused on the effects of the fuel concentration on dissipative assembly of non-biological molecules, this work demonstrates that the protein structure, even in nearly fully denatured proteins, can exert similar control over reaction kinetics, lifetime, and resulting mechanical properties of transient hydrogels.
Collapse
Affiliation(s)
- Shakiba Nikfarjam
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Rebecca Gibbons
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Faraz Burni
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Mikhail A Anisimov
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20740, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| |
Collapse
|
13
|
Hughes MD, Cussons S, Mahmoudi N, Brockwell DJ, Dougan L. Tuning Protein Hydrogel Mechanics through Modulation of Nanoscale Unfolding and Entanglement in Postgelation Relaxation. ACS NANO 2022; 16:10667-10678. [PMID: 35731007 PMCID: PMC9331141 DOI: 10.1021/acsnano.2c02369] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Globular folded proteins are versatile nanoscale building blocks to create biomaterials with mechanical robustness and inherent biological functionality due to their specific and well-defined folded structures. Modulating the nanoscale unfolding of protein building blocks during network formation (in situ protein unfolding) provides potent opportunities to control the protein network structure and mechanics. Here, we control protein unfolding during the formation of hydrogels constructed from chemically cross-linked maltose binding protein using ligand binding and the addition of cosolutes to modulate protein kinetic and thermodynamic stability. Bulk shear rheology characterizes the storage moduli of the bound and unbound protein hydrogels and reveals a correlation between network rigidity, characterized as an increase in the storage modulus, and protein thermodynamic stability. Furthermore, analysis of the network relaxation behavior identifies a crossover from an unfolding dominated regime to an entanglement dominated regime. Control of in situ protein unfolding and entanglement provides an important route to finely tune the architecture, mechanics, and dynamic relaxation of protein hydrogels. Such predictive control will be advantageous for future smart biomaterials for applications which require responsive and dynamic modulation of mechanical properties and biological function.
Collapse
Affiliation(s)
- Matt D.
G. Hughes
- School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Sophie Cussons
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
- School of
Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Najet Mahmoudi
- ISIS
Neutron
and Muon Spallation Source, STFC Rutherford
Appleton Laboratory, Oxfordshire OX11 0QX, U.K.
| | - David J. Brockwell
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
- School of
Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Lorna Dougan
- School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
14
|
Ghrayeb M, Chai L. Demonstrating Principle Aspects of Peptide‐ and Protein‐ Based Hydrogels Using Metallogels Examples. Isr J Chem 2022. [DOI: 10.1002/ijch.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mnar Ghrayeb
- Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra campus Jerusalem 91904 Israel
| | - Liraz Chai
- Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra campus Jerusalem 91904 Israel
| |
Collapse
|
15
|
Zhang X, Tang Y, Wang P, Wang Y, Wu T, Li T, Huang S, Zhang J, Wang H, Ma S, Wang L, Xu W. A review of recent advances in metal ion hydrogels: mechanism, properties and their biological applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj02843c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms, common properties and biological applications of different types of metal ion hydrogels are summarized.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Puying Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yanyan Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tingting Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tao Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Shuo Huang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jie Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Haili Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Songmei Ma
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Linlin Wang
- Department of Food Engineering, Shandong Business Institute, Yantai 264670, P. R. China
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| |
Collapse
|
16
|
Zhou HR, Huang J, Chen M, Li Y, Yuan M, Yang H. Effect of metal ions with reducing properties on hydrogels containing catechol groups. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Hughes MD, Hanson BS, Cussons S, Mahmoudi N, Brockwell DJ, Dougan L. Control of Nanoscale In Situ Protein Unfolding Defines Network Architecture and Mechanics of Protein Hydrogels. ACS NANO 2021; 15:11296-11308. [PMID: 34214394 PMCID: PMC8320229 DOI: 10.1021/acsnano.1c00353] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/15/2021] [Indexed: 05/10/2023]
Abstract
Hierarchical assemblies of proteins exhibit a wide-range of material properties that are exploited both in nature and by artificially by humankind. However, little is understood about the importance of protein unfolding on the network assembly, severely limiting opportunities to utilize this nanoscale transition in the development of biomimetic and bioinspired materials. Here we control the force lability of a single protein building block, bovine serum albumin (BSA), and demonstrate that protein unfolding plays a critical role in defining the architecture and mechanics of a photochemically cross-linked native protein network. The internal nanoscale structure of BSA contains "molecular reinforcement" in the form of 17 covalent disulphide "nanostaples", preventing force-induced unfolding. Upon addition of reducing agents, these nanostaples are broken rendering the protein force labile. Employing a combination of circular dichroism (CD) spectroscopy, small-angle scattering (SAS), rheology, and modeling, we show that stapled protein forms reasonably homogeneous networks of cross-linked fractal-like clusters connected by an intercluster region of folded protein. Conversely, in situ protein unfolding results in more heterogeneous networks of denser fractal-like clusters connected by an intercluster region populated by unfolded protein. In addition, gelation-induced protein unfolding and cross-linking in the intercluster region changes the hydrogel mechanics, as measured by a 3-fold enhancement of the storage modulus, an increase in both the loss ratio and energy dissipation, and markedly different relaxation behavior. By controlling the protein's ability to unfold through nanoscale (un)stapling, we demonstrate the importance of in situ unfolding in defining both network architecture and mechanics, providing insight into fundamental hierarchical mechanics and a route to tune biomaterials for future applications.
Collapse
Affiliation(s)
- Matt D.
G. Hughes
- School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Benjamin S. Hanson
- School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Sophie Cussons
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
- School of
Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Najet Mahmoudi
- ISIS Neutron
and Muon Spallation Source, STFC Rutherford
Appleton Laboratory, Oxfordshire OX11 0QX, U.K.
| | - David J. Brockwell
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
- School of
Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Lorna Dougan
- School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
18
|
Huerta-López C, Alegre-Cebollada J. Protein Hydrogels: The Swiss Army Knife for Enhanced Mechanical and Bioactive Properties of Biomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1656. [PMID: 34202469 PMCID: PMC8307158 DOI: 10.3390/nano11071656] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022]
Abstract
Biomaterials are dynamic tools with many applications: from the primitive use of bone and wood in the replacement of lost limbs and body parts, to the refined involvement of smart and responsive biomaterials in modern medicine and biomedical sciences. Hydrogels constitute a subtype of biomaterials built from water-swollen polymer networks. Their large water content and soft mechanical properties are highly similar to most biological tissues, making them ideal for tissue engineering and biomedical applications. The mechanical properties of hydrogels and their modulation have attracted a lot of attention from the field of mechanobiology. Protein-based hydrogels are becoming increasingly attractive due to their endless design options and array of functionalities, as well as their responsiveness to stimuli. Furthermore, just like the extracellular matrix, they are inherently viscoelastic in part due to mechanical unfolding/refolding transitions of folded protein domains. This review summarizes different natural and engineered protein hydrogels focusing on different strategies followed to modulate their mechanical properties. Applications of mechanically tunable protein-based hydrogels in drug delivery, tissue engineering and mechanobiology are discussed.
Collapse
Affiliation(s)
- Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | |
Collapse
|
19
|
Li H. There Is Plenty of Room in The Folded Globular Proteins: Tandem Modular Elastomeric Proteins Offer New Opportunities in Engineering Protein‐Based Biomaterials. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hongbin Li
- Department of Chemistry University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
20
|
Aufderhorst-Roberts A, Hughes MDG, Hare A, Head DA, Kapur N, Brockwell DJ, Dougan L. Reaction Rate Governs the Viscoelasticity and Nanostructure of Folded Protein Hydrogels. Biomacromolecules 2020; 21:4253-4260. [PMID: 32870660 DOI: 10.1021/acs.biomac.0c01044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hydrogels constructed from folded protein domains are of increasing interest as resilient and responsive biomaterials, but their optimization for applications requires time-consuming and costly molecular design. Here, we explore a complementary approach to control their properties by examining the influence of crosslinking rate on the structure and viscoelastic response of a model hydrogel constructed from photochemically crosslinked bovine serum albumin (BSA). Gelation is observed to follow a heterogeneous nucleation pathway in which BSA monomers crosslink into compact nuclei that grow into fractal percolated networks. Both the viscoelastic response probed by shear rheology and the nanostructure probed by small-angle X-ray scattering (SAXS) are shown to depend on the photochemical crosslinking reaction rate, with increased reaction rates corresponding to higher viscoelastic moduli, lower fractal dimension, and higher fractal cluster size. Reaction rate-dependent changes are shown to be consistent with a transition between diffusion- and rate-limited assembly, and the corresponding changes to viscoelastic response are proposed to arise from the presence of nonfractal depletion regions, as confirmed by SAXS. This controllable nanostructure and viscoelasticity constitute a potential route for the precise control of hydrogel properties, without the need for molecular modification.
Collapse
Affiliation(s)
| | - Matt D G Hughes
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Andrew Hare
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - David A Head
- School of Computing, University of Leeds, Leeds LS2 9JT, U.K
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - David J Brockwell
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
21
|
Fu L, Li H. Toward Quantitative Prediction of the Mechanical Properties of Tandem Modular Elastomeric Protein-Based Hydrogels. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linglan Fu
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
22
|
Khoury LR, Slawinski M, Collison DR, Popa I. Cation-induced shape programming and morphing in protein-based hydrogels. SCIENCE ADVANCES 2020; 6:eaba6112. [PMID: 32494690 PMCID: PMC7190360 DOI: 10.1126/sciadv.aba6112] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/07/2020] [Indexed: 05/10/2023]
Abstract
Smart materials that are capable of memorizing a temporary shape, and morph in response to a stimulus, have the potential to revolutionize medicine and robotics. Here, we introduce an innovative method to program protein hydrogels and to induce shape changes in aqueous solutions at room temperature. We demonstrate our approach using hydrogels made from serum albumin, the most abundant protein in the blood plasma, which are synthesized in a cylindrical or flower shape. These gels are then programmed into a spring or a ring shape, respectively. The programming is performed through a marked change in stiffness (of up to 17-fold), induced by adsorption of Zn2+ or Cu2+ cations. We show that these programmed biomaterials can then morph back into their original shape, as the cations diffuse outside the hydrogel material. The approach demonstrated here represents an innovative strategy to program protein-based hydrogels to behave as actuators.
Collapse
Affiliation(s)
- Luai R. Khoury
- Department of Physics, University of Wisconsin-Milwaukee (UWM), 3135 North Maryland Ave., Milwaukee, WI 53211, USA
| | - Marina Slawinski
- Department of Physics, University of Wisconsin-Milwaukee (UWM), 3135 North Maryland Ave., Milwaukee, WI 53211, USA
| | - Daniel R. Collison
- Department of Physics, University of Wisconsin-Milwaukee (UWM), 3135 North Maryland Ave., Milwaukee, WI 53211, USA
| | | |
Collapse
|
23
|
Duan T, Li H. In Situ Phase Transition of Elastin-Like Polypeptide Chains Regulates Thermoresponsive Properties of Elastomeric Protein-Based Hydrogels. Biomacromolecules 2020; 21:2258-2267. [DOI: 10.1021/acs.biomac.0c00206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Tianyu Duan
- Department of Chemistry University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
24
|
Kou S, Yang X, Yang Z, Liu X, Wegner SV, Sun F. Cobalt-Cross-Linked, Redox-Responsive Spy Network Protein Hydrogels. ACS Macro Lett 2019; 8:773-778. [PMID: 35619508 DOI: 10.1021/acsmacrolett.9b00333] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although assembly of recombinant proteins by SpyTag/SpyCatcher chemistry has proven to be a versatile approach for creating bioactive hydrogels, the resulting Spy networks often exhibit weak mechanics due to the poor efficiency of interchain cross-linking. Here we leverage metal/ligand (i.e., cobalt/His6-tag) coordination interactions to modulate the bulk mechanics of the protein networks. The drastic difference between the Co2+ and Co3+ complexes in thermodynamic and kinetic properties enabled us to regulate the materials' properties and to immobilize and release recombinant proteins in a redox-dependent manner. The resulting hydrogels are capable of not only supporting cell growth and proliferation, but also influencing specific cell signaling via immobilized growth factors such as leukemia inhibitory factor (LIF). The integrated use of stimuli-responsive metal coordination and SpyTag/SpyCatcher chemistry opens up a new dimension for designing bioactive protein materials.
Collapse
Affiliation(s)
- Songzi Kou
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Xin Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhongguang Yang
- Department of Chemical and Biological Engineering and Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiaotian Liu
- Department of Chemical and Biological Engineering and Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | - Fei Sun
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- Department of Chemical and Biological Engineering and Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
25
|
Fu L, Haage A, Kong N, Tanentzapf G, Li H. Dynamic protein hydrogels with reversibly tunable stiffness regulate human lung fibroblast spreading reversibly. Chem Commun (Camb) 2019; 55:5235-5238. [DOI: 10.1039/c9cc01276a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fibroblast cells change their morphology reversibly in response to changes in protein hydrogel stiffness.
Collapse
Affiliation(s)
- Linglan Fu
- Department of Chemistry, University of British Columbia
- Vancouver
- Canada
| | - Amanda Haage
- Department of Cellular and Physiological Sciences
- Life Sciences Centre
- 2350 Health Sciences Mall
- University of British Columbia
- Vancouver
| | - Na Kong
- Department of Chemistry, University of British Columbia
- Vancouver
- Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences
- Life Sciences Centre
- 2350 Health Sciences Mall
- University of British Columbia
- Vancouver
| | - Hongbin Li
- Department of Chemistry, University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
26
|
Rosales AM, Rodell CB, Chen MH, Morrow MG, Anseth KS, Burdick JA. Reversible Control of Network Properties in Azobenzene-Containing Hyaluronic Acid-Based Hydrogels. Bioconjug Chem 2018; 29:905-913. [PMID: 29406696 DOI: 10.1021/acs.bioconjchem.7b00802] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biomimetic hydrogels fabricated from biologically derived polymers, such as hyaluronic acid (HA), are useful for numerous biomedical applications. Due to the dynamic nature of biological processes, it is of great interest to synthesize hydrogels with dynamically tunable network properties where various functions (e.g., cargo delivery, mechanical signaling) can be changed over time. Among the various stimuli developed to control hydrogel properties, light stands out for its exquisite spatiotemporal control; however, most light-based chemistries are unidirectional in their ability to manipulate network changes. Here, we report a strategy to reversibly modulate HA hydrogel properties with light, using supramolecular cross-links formed via azobenzene bound to β-cyclodextrin. Upon isomerization with 365 nm or 400-500 nm light, the binding affinity between azobenzene and β-cyclodextrin changed and altered the network connectivity. The hydrogel mechanical properties depended on both the azobenzene modification and isomeric state (lower for cis state), with up to a 60% change in storage modulus with light exposure. Furthermore, the release of a fluorescently labeled protein was accelerated with light exposure under conditions that were cytocompatible to encapsulated cells. These results indicate that the developed hydrogels may be suitable for applications in which temporal regulation of material properties is important, such as drug delivery or mechanobiology studies.
Collapse
Affiliation(s)
- Adrianne M Rosales
- Department of Chemical and Biological Engineering & BioFrontiers Institute , University of Colorado Boulder , Boulder , Colorado 80303 , United States
| | - Christopher B Rodell
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Minna H Chen
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Matthew G Morrow
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering & BioFrontiers Institute , University of Colorado Boulder , Boulder , Colorado 80303 , United States
| | - Jason A Burdick
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
27
|
Affiliation(s)
| | - Hongbin Li
- Department of Chemistry, University of British Columbia
| |
Collapse
|