1
|
Yoo S, Koh WG, Lee HJ. Light-Intensity-Dependent Control of Collagen Hydrogel Properties via Riboflavin Phosphate-Mediated Photocrosslinking. MATERIALS (BASEL, SWITZERLAND) 2025; 18:828. [PMID: 40004352 PMCID: PMC11857272 DOI: 10.3390/ma18040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
While photocrosslinked collagen hydrogels show promise in tissue engineering, conventional approaches for property control often require complex chemical modifications or concentration changes that alter their biochemical composition. Here, we present the first systematic investigation of light-intensity-dependent control in riboflavin phosphate (RFP)-mediated photocrosslinking as a novel, single-parameter approach to modulate hydrogel properties while preserving native biochemical environments. We systematically investigated the effects of varying light intensities (100 K, 50 K, and 10 K lux) during hydrogel fabrication through comprehensive structural, mechanical, and biological characterization. Scanning electron microscopy revealed unprecedented control over network architecture, where higher light intensities produced more uniform and compact networks, while swelling ratio analysis showed significant differences between 100 K lux (246 ± 2-fold) and 10 K lux (265 ± 4-fold) conditions. Most significantly, we discovered that intermediate intensity (50 K lux) uniquely optimized mechanical performance in physiological conditions, achieving storage modulus of about 220 Pa after 24 h swelling, compared to about 160 and 109 Pa for 100 K and 10 K lux conditions, respectively. Remarkably, cellular studies using NIH/3T3 fibroblasts demonstrated that lower light intensity (10 K lux) enhanced cell proliferation by 2.8-fold compared to 100 K lux conditions after 7 days of culture, with superior cell network formation in both 2D and 3D environments. This groundbreaking approach establishes light intensity as a powerful single parameter for precise control of both mechanical and biological properties, offering a transformative tool for tailoring collagen-based biomaterials in tissue engineering applications.
Collapse
Affiliation(s)
- Seungyeop Yoo
- Department of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea;
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyun Jong Lee
- Department of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
2
|
Mohammadkhah M, Klinge S. Review paper: The importance of consideration of collagen cross-links in computational models of collagen-based tissues. J Mech Behav Biomed Mater 2023; 148:106203. [PMID: 37879165 DOI: 10.1016/j.jmbbm.2023.106203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Collagen as the main protein in Extra Cellular Matrix (ECM) is the main load-bearing component of fibrous tissues. Nanostructure and architecture of collagen fibrils play an important role in mechanical behavior of these tissues. Extensive experimental and theoretical studies have so far been performed to capture these properties, but none of the current models realistically represent the complexity of network mechanics because still less is known about the collagen's inner structure and its effect on the mechanical properties of tissues. The goal of this review article is to emphasize the significance of cross-links in computational modeling of different collagen-based tissues, and to reveal the need for continuum models to consider cross-links properties to better reflect the mechanical behavior observed in experiments. In addition, this study outlines the limitations of current investigations and provides potential suggestions for the future work.
Collapse
Affiliation(s)
- Melika Mohammadkhah
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Sandra Klinge
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
3
|
Ostadi Moghaddam A, Arshee MR, Lin Z, Sivaguru M, Phillips H, McFarlin BL, Toussaint KC, Wagoner Johnson AJ. Orientation-dependent indentation reveals the crosslink-mediated deformation mechanisms of collagen fibrils. Acta Biomater 2023; 158:347-357. [PMID: 36638936 PMCID: PMC10039649 DOI: 10.1016/j.actbio.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
The spatial arrangement and interactions of the extracellular matrix (ECM) components control the mechanical behavior of tissue at multiple length scales. Changes in microscale deformation mechanisms affect tissue function and are often hallmarks of remodeling and disease. Despite their importance, the deformation mechanisms that modulate the mechanical behavior of collagenous tissue, particularly in indentation and compression modes of deformation, remain poorly understood. Here, we develop an integrated computational and experimental approach to investigate the deformation mechanisms of collagenous tissue at the microscale. While the complex deformation arising from indentation with a spherical probe is often considered a pitfall rather than an opportunity, we leverage this orientation-dependent deformation to examine the shear-regulated interactions of collagen fibrils and the role of crosslinks in modulating these interactions. We specifically examine tendon and cervix, two tissues rich in collagen with quite different microstructures and mechanical functions. We find that interacting, crosslinked collagen fibrils resist microscale longitudinal compressive forces, while widely used constitutive models fail to capture this behavior. The reorientation of collagen fibrils tunes the compressive stiffness of complex tissues like cervix. This study offers new insights into the mechanical behavior of collagen fibrils during indentation, and more generally, under longitudinal compressive forces, and illustrates the mechanisms that contribute to the experimentally observed orientation-dependent mechanical behavior. STATEMENT OF SIGNIFICANCE: Remodeling and disease can affect the deformation and interaction of tissue constituents, and thus mechanical function of tissue. Yet, the microscale deformation mechanisms are not well characterized in many tissues. Here, we develop a combined experimental-computational approach to infer the microscale deformation mechanisms of collagenous tissues with very different functions: tendon and cervix. Results show that collagen fibrils resist microscale forces along their length, though widely-used constitutive models do not account for this mechanism. This deformation process partially modulates the compressive stiffness of complex tissues such as cervix. Computational modeling shows that crosslink-mediated shear deformations are central to this unexpected behavior. This study offers new insights into the deformation mechanisms of collagenous tissue and the function of collagen crosslinkers.
Collapse
Affiliation(s)
- A Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - M R Arshee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Z Lin
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - M Sivaguru
- Flow Cytometry and Microscopy to Omics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - H Phillips
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - B L McFarlin
- Department of Women, Children and Family Health Science, University of Illinois College of Nursing, Chicago, IL 60612, USA
| | - K C Toussaint
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - A J Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Molter CW, Muszynski EF, Tao Y, Trivedi T, Clouvel A, Ehrlicher AJ. Prostate cancer cells of increasing metastatic potential exhibit diverse contractile forces, cell stiffness, and motility in a microenvironment stiffness-dependent manner. Front Cell Dev Biol 2022; 10:932510. [PMID: 36200037 PMCID: PMC9527313 DOI: 10.3389/fcell.2022.932510] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
During metastasis, all cancer types must migrate through crowded multicellular environments. Simultaneously, cancers appear to change their biophysical properties. Indeed, cell softening and increased contractility are emerging as seemingly ubiquitous biomarkers of metastatic progression which may facilitate metastasis. Cell stiffness and contractility are also influenced by the microenvironment. Stiffer matrices resembling the tumor microenvironment cause metastatic cells to contract more strongly, further promoting contractile tumorigenic phenotypes. Prostate cancer (PCa), however, appears to deviate from these common cancer biophysics trends; aggressive metastatic PCa cells appear stiffer, rather than softer, to their lowly metastatic PCa counterparts. Although metastatic PCa cells have been reported to be more contractile than healthy cells, how cell contractility changes with increasing PCa metastatic potential has remained unknown. Here, we characterize the biophysical changes of PCa cells of various metastatic potential as a function of microenvironment stiffness. Using a panel of progressively increasing metastatic potential cell lines (22RV1, LNCaP, DU145, and PC3), we quantified their contractility using traction force microscopy (TFM), and measured their cortical stiffness using optical magnetic twisting cytometry (OMTC) and their motility using time-lapse microscopy. We found that PCa contractility, cell stiffness, and motility do not universally scale with metastatic potential. Rather, PCa cells of various metastatic efficiencies exhibit unique biophysical responses that are differentially influenced by substrate stiffness. Despite this biophysical diversity, this work concludes that mechanical microenvironment is a key determinant in the biophysical response of PCa with variable metastatic potentials. The mechanics-oriented focus and methodology of the study is unique and complementary to conventional biochemical and genetic strategies typically used to understand this disease, and thus may usher in new perspectives and approaches.
Collapse
Affiliation(s)
- Clayton W. Molter
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Eliana F. Muszynski
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Neuroscience, McGill University, Montreal, QC, Canada
| | - Yuanyuan Tao
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| | - Tanisha Trivedi
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Anna Clouvel
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Ferruzzi J, Zhang Y, Roblyer D, Zaman MH. Multi-scale Mechanics of Collagen Networks: Biomechanical Basis of Matrix Remodeling in Cancer. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Toward rational algorithmic design of collagen-based biomaterials through multiscale computational modeling. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Babaei B, Velasquez-Mao AJ, Pryse KM, McConnaughey WB, Elson EL, Genin GM. Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix. J Mech Behav Biomed Mater 2018; 84:198-207. [PMID: 29793157 PMCID: PMC5995675 DOI: 10.1016/j.jmbbm.2018.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022]
Abstract
Characterizing how a tissue's constituents give rise to its viscoelasticity is important for uncovering how hidden timescales underlie multiscale biomechanics. These constituents are viscoelastic in nature, and their mechanics must typically be assessed from the uniaxial behavior of a tissue. Confounding the challenge is that tissue viscoelasticity is typically associated with nonlinear elastic responses. Here, we experimentally assessed how fibroblasts and extracellular matrix (ECM) within engineered tissue constructs give rise to the nonlinear viscoelastic responses of a tissue. We applied a constant strain rate, "triangular-wave" loading and interpreted responses using the Fung quasi-linear viscoelastic (QLV) material model. Although the Fung QLV model has several well-known weaknesses, it was well suited to the behaviors of the tissue constructs, cells, and ECM tested. Cells showed relatively high damping over certain loading frequency ranges. Analysis revealed that, even in cases where the Fung QLV model provided an excellent fit to data, the the time constant derived from the model was not in general a material parameter. Results have implications for design of protocols for the mechanical characterization of biological materials, and for the mechanobiology of cells within viscoelastic tissues.
Collapse
Affiliation(s)
- Behzad Babaei
- Neuroscience Research Australia, Randwick, Australia
| | - A J Velasquez-Mao
- UC Berkeley and UC San Francisco Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Kenneth M Pryse
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - William B McConnaughey
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Elliot L Elson
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
8
|
Genin GM, Shenoy VB, Peng G, Buehler MJ. Integrated Multiscale Biomaterials Experiment and Modeling. ACS Biomater Sci Eng 2017; 3:2628-2632. [PMID: 31157296 PMCID: PMC6544164 DOI: 10.1021/acsbiomaterials.7b00821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The integration of modeling and experimentation is an integral component of all engineering design. Developing the technologies to achieve this represents a critical challenge in biomaterials because of the hierarchical structures that comprise them and the spectra of timescales upon which they operate. Progress in integrating modeling and experiment in biomaterials represents progress towards harnessing them for engineering application. We present here a summary of the state of the art, and outlooks for the field as a whole.
Collapse
Affiliation(s)
- Guy M Genin
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 United States
- NSF Science and Technology Center for Engineering Mechanobiology, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 United States
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, PA 19104-6391 United States
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, 220 South 33rd Street, Philadelphia, PA 19104-6391 United States
| | - Grace Peng
- National Institute of Biomedical Imaging and Bioengineering, 6707 Democracy Boulevard, Suite 202, Bethesda, MD 20892-5469 United States
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|