1
|
Bae KB, Kim HM, Son JW, Ryu JY, Hwang YC, Koh JT, Oh WM, Park C, Lee BN. Effect of 3D-printed polycaprolactone/osteolectin scaffolds on the odontogenic differentiation of human dental pulp cells. Biomed Mater 2024; 19:045027. [PMID: 38740059 DOI: 10.1088/1748-605x/ad4ad9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Cell-based tissue engineering often requires the use of scaffolds to provide a three-dimensional (3D) framework for cell proliferation and tissue formation. Polycaprolactone (PCL), a type of polymer, has good printability, favorable surface modifiability, adaptability, and biodegradability. However, its large-scale applicability is hindered by its hydrophobic nature, which affects biological properties. Composite materials can be created by adding bioactive materials to the polymer to improve the properties of PCL scaffolds. Osteolectin is an odontogenic factor that promotes the maintenance of the adult skeleton by promoting the differentiation of LepR+ cells into osteoblasts. Therefore, the aim of this study was to evaluate whether 3D-printed PCL/osteolectin scaffolds supply a suitable microenvironment for the odontogenic differentiation of human dental pulp cells (hDPCs). The hDPCs were cultured on 3D-printed PCL scaffolds with or without pores. Cell attachment and cell proliferation were evaluated using EZ-Cytox. The odontogenic differentiation of hDPCs was evaluated by alizarin red S staining and alkaline phosphatase assays. Western blot was used to evaluate the expression of the proteins DSPP and DMP-Results: The attachment of hDPCs to PCL scaffolds with pores was significantly higher than to PCL scaffolds without pores. The odontogenic differentiation of hDPCs was induced more in PCL/osteolectin scaffolds than in PCL scaffolds, but there was no statistically significant difference. 3D-printed PCL scaffolds with pores are suitable for the growth of hDPCs, and the PCL/osteolectin scaffolds can provide a more favorable microenvironment for the odontogenic differentiation of hDPCs.
Collapse
Affiliation(s)
- Kkot-Byeol Bae
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hae-Mi Kim
- Private practice, Local Dental Clinic, Seoul, Republic of Korea
| | - Ji-Won Son
- Researcher, Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Young Ryu
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Won-Mann Oh
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Chan Park
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Zheng Z, Liu H, Liu S, Luo E, Liu X. Mesenchymal stem cells in craniofacial reconstruction: a comprehensive review. Front Mol Biosci 2024; 11:1362338. [PMID: 38690295 PMCID: PMC11058977 DOI: 10.3389/fmolb.2024.1362338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Craniofacial reconstruction faces many challenges, including high complexity, strong specificity, severe injury, irregular and complex wounds, and high risk of bleeding. Traditionally, the "gold standard" for treating craniofacial bone defects has been tissue transplantation, which involves the transplantation of bone, cartilage, skin, and other tissues from other parts of the body. However, the shape of craniofacial bone and cartilage structures varies greatly and is distinctly different from ordinary long bones. Craniofacial bones originate from the neural crest, while long bones originate from the mesoderm. These factors contribute to the poor effectiveness of tissue transplantation in repairing craniofacial defects. Autologous mesenchymal stem cell transplantation exhibits excellent pluripotency, low immunogenicity, and minimally invasive properties, and is considered a potential alternative to tissue transplantation for treating craniofacial defects. Researchers have found that both craniofacial-specific mesenchymal stem cells and mesenchymal stem cells from other parts of the body have significant effects on the restoration and reconstruction of craniofacial bones, cartilage, wounds, and adipose tissue. In addition, the continuous development and application of tissue engineering technology provide new ideas for craniofacial repair. With the continuous exploration of mesenchymal stem cells by researchers and the continuous development of tissue engineering technology, the use of autologous mesenchymal stem cell transplantation for craniofacial reconstruction has gradually been accepted and promoted. This article will review the applications of various types of mesenchymal stem cells and related tissue engineering in craniofacial repair and reconstruction.
Collapse
Affiliation(s)
| | | | | | - En Luo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Cho EH, Kim YS, Kim YR, Kang JH, Park SW, Lim HP, Yun KD, Jang WH, Koh JT, Park C, Lee BN. A leptin-loaded poly- ϵ-caprolactone 3D printing scaffold for odontoblastic differentiation in human dental pulp cells. Biomed Mater 2023; 19:015009. [PMID: 37972541 DOI: 10.1088/1748-605x/ad0d84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
This study investigated the effects on odontoblast differentiation of a 3D-printed poly-ϵ-caprolactone (PCL) scaffold that incorporated leptin. Material extrusion-type 3D printing with a 43 000-molecular weight PCL material was used to fabricate a PCL scaffold with a 6 mm diameter, 1 mm height, and 270-340 µm pore size. The experimental groups were PCL scaffolds (control group), PCL scaffolds with aminated surfaces (group A), and PCL scaffolds with leptin on the aminated surface (group L). The aminated surface was treated with 1,6-hexanediamine and verified by ninhydrin analysis. Leptin loading was performed using Traut's reagent and 4-(N-Maleimidomethyl)cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt (Sulfo-SMCC). Groups A and L showed significantly higher surface wettability, pulp cell adhesion, and proliferation than the control group. Group L exhibited increased alkaline phosphatase, calcification deposits, and mRNA and protein expression of dentin sialophosphoprotein and dentin matrix acidic phosphoprotein 1 compared with the control group. In this study, a 3D-printed PCL scaffold containing leptin was enhanced odontoblast differentiation and dental pulp cells adhesion and proliferation.
Collapse
Affiliation(s)
- Eun-Hyo Cho
- School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ye-Seul Kim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Ran Kim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jin-Ho Kang
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Won Park
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun-Pil Lim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Kwi-Dug Yun
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Woo-Hyung Jang
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tea Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Chan Park
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Rosendahl J, Svanström A, Berglin M, Petronis S, Bogestål Y, Stenlund P, Standoft S, Ståhlberg A, Landberg G, Chinga-Carrasco G, Håkansson J. 3D Printed Nanocellulose Scaffolds as a Cancer Cell Culture Model System. Bioengineering (Basel) 2021; 8:97. [PMID: 34356204 PMCID: PMC8301137 DOI: 10.3390/bioengineering8070097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Current conventional cancer drug screening models based on two-dimensional (2D) cell culture have several flaws and there is a large need of more in vivo mimicking preclinical drug screening platforms. The microenvironment is crucial for the cells to adapt relevant in vivo characteristics and here we introduce a new cell culture system based on three-dimensional (3D) printed scaffolds using cellulose nanofibrils (CNF) pre-treated with 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO) as the structural material component. Breast cancer cell lines, MCF7 and MDA-MB-231, were cultured in 3D TEMPO-CNF scaffolds and were shown by scanning electron microscopy (SEM) and histochemistry to grow in multiple layers as a heterogenous cell population with different morphologies, contrasting 2D cultured mono-layered cells with a morphologically homogenous cell population. Gene expression analysis demonstrated that 3D TEMPO-CNF scaffolds induced elevation of the stemness marker CD44 and the migration markers VIM and SNAI1 in MCF7 cells relative to 2D control. T47D cells confirmed the increased level of the stemness marker CD44 and migration marker VIM which was further supported by increased capacity of holoclone formation for 3D cultured cells. Therefore, TEMPO-CNF was shown to represent a promising material for 3D cell culture model systems for cancer cell applications such as drug screening.
Collapse
Affiliation(s)
- Jennifer Rosendahl
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, SE-50115 Borås, Sweden; (J.R.); (M.B.); (S.P.); (Y.B.); (P.S.); (S.S.)
| | - Andreas Svanström
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 425, Medicinaregatan 1G, SE-41390 Gothenburg, Sweden; (A.S.); (A.S.); (G.L.)
| | - Mattias Berglin
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, SE-50115 Borås, Sweden; (J.R.); (M.B.); (S.P.); (Y.B.); (P.S.); (S.S.)
| | - Sarunas Petronis
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, SE-50115 Borås, Sweden; (J.R.); (M.B.); (S.P.); (Y.B.); (P.S.); (S.S.)
| | - Yalda Bogestål
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, SE-50115 Borås, Sweden; (J.R.); (M.B.); (S.P.); (Y.B.); (P.S.); (S.S.)
| | - Patrik Stenlund
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, SE-50115 Borås, Sweden; (J.R.); (M.B.); (S.P.); (Y.B.); (P.S.); (S.S.)
| | - Simon Standoft
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, SE-50115 Borås, Sweden; (J.R.); (M.B.); (S.P.); (Y.B.); (P.S.); (S.S.)
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 425, Medicinaregatan 1G, SE-41390 Gothenburg, Sweden; (A.S.); (A.S.); (G.L.)
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, SE-40530 Gothenburg, Sweden
| | - Göran Landberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 425, Medicinaregatan 1G, SE-41390 Gothenburg, Sweden; (A.S.); (A.S.); (G.L.)
- Department of Clinical Pathology, Sahlgrenska University Hospital, SE-41345 Gothenburg, Sweden
| | | | - Joakim Håkansson
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, SE-50115 Borås, Sweden; (J.R.); (M.B.); (S.P.); (Y.B.); (P.S.); (S.S.)
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-40530 Gothenburg, Sweden
| |
Collapse
|
5
|
Klimek K, Ginalska G. Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications-A Review. Polymers (Basel) 2020; 12:E844. [PMID: 32268607 PMCID: PMC7240665 DOI: 10.3390/polym12040844] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Polymer scaffolds constitute a very interesting strategy for tissue engineering. Even though they are generally non-toxic, in some cases, they may not provide suitable support for cell adhesion, proliferation, and differentiation, which decelerates tissue regeneration. To improve biological properties, scaffolds are frequently enriched with bioactive molecules, inter alia extracellular matrix proteins, adhesive peptides, growth factors, hormones, and cytokines. Although there are many papers describing synthesis and properties of polymer scaffolds enriched with proteins or peptides, few reviews comprehensively summarize these bioactive molecules. Thus, this review presents the current knowledge about the most important proteins and peptides used for modification of polymer scaffolds for tissue engineering. This paper also describes the influence of addition of proteins and peptides on physicochemical, mechanical, and biological properties of polymer scaffolds. Moreover, this article sums up the major applications of some biodegradable natural and synthetic polymer scaffolds modified with proteins and peptides, which have been developed within the past five years.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland;
| | | |
Collapse
|
6
|
Firouzian KF, Zhang T, Zhang H, Song Y, Su X, Lin F. An Image-Guided Intrascaffold Cell Assembly Technique for Accurate Printing of Heterogeneous Tissue Constructs. ACS Biomater Sci Eng 2019; 5:3499-3510. [PMID: 33405733 DOI: 10.1021/acsbiomaterials.9b00318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For tissue engineering and regenerative medicine, creating thick and heterogeneous scaffold-based tissue constructs requires deep and precise multicellular deposition. Traditional cell seeding strategies lack the ability to create multicellular tissue constructs with high cell penetration and distribution, while emerging strategies aim to simultaneously combine cell-laden tissue segments with scaffold fabrication. Here we describe a technique that allows for three-dimensional (3D) intrascaffold cell assembly in which scaffolds are prefabricated and pretreated, followed by accurate cell distribution within the scaffold using an image-guided technique. This two-step process yields less limitation in scaffold material choice as well as additional treatments, provides accurate cell distribution, and has less potential to harm cells. The image processing technique captures a 2D geometric image of the scaffold, followed by a series of processes, mainly including grayscale transformation, threshold segmentation, and boundary extraction, to ultimately locate scaffold macropore centroids. Coupled with camera calibration data, accurate 3D cell assembly pathway plans can be made. Intrascaffold assembly parameter optimization and complex intrascaffold gradient, multidirectional, and vascular structure assembly were studied. Demonstration was also made with path planning and cell assembly experiments using NIH3T3-cell-laden hydrogels and collagen-coated poly(lactic-co-glycolic acid) (PLGA) scaffolds. Experiments with CellTracker fluorescent monitoring, live/dead staining, and phalloidin-F-actin/DAPI immunostaining and comparison with two control groups (bioink manual injection and cell suspension static surface pipetting) showed accurate cell distribution and positioning and high cell viability (>93%). The PrestoBlue assay showed obvious cell proliferation over seven culture days in vitro. This technique provides an accurate method to aid simple and complex cell colonization with variant depth within 3D-scaffold-based constructs using multiple cells. The modular method can be used with any existing printing platform and shows potential in facilitating direct spatial organization and hierarchal 3D assembly of multiple cells and/or drugs within scaffolds for further tissue engineering studies and clinical applications.
Collapse
Affiliation(s)
- Kevin F Firouzian
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hefeng Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Song
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaolei Su
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Feng Lin
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|