1
|
Giavaresi G, Bellavia D, De Luca A, Costa V, Raimondi L, Cordaro A, Sartori M, Terrando S, Toscano A, Pignatti G, Fini M. Magnesium Alloys in Orthopedics: A Systematic Review on Approaches, Coatings and Strategies to Improve Biocompatibility, Osteogenic Properties and Osteointegration Capabilities. Int J Mol Sci 2023; 25:282. [PMID: 38203453 PMCID: PMC10778661 DOI: 10.3390/ijms25010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
There is increasing interest in using magnesium (Mg) alloy orthopedic devices because of their mechanical properties and bioresorption potential. Concerns related to their rapid degradation have been issued by developing biodegradable micro- and nanostructured coatings to enhance corrosion resistance and limit the release of hydrogen during degradation. This systematic review based on four databases (PubMed®, Embase, Web of Science™ and ScienceDirect®) aims to present state-of-the-art strategies, approaches and materials used to address the critical factors currently impeding the utilization of Mg alloy devices. Forty studies were selected according to PRISMA guidelines and specific PECO criteria. Risk of bias assessment was conducted using OHAT and SYRCLE tools for in vitro and in vivo studies, respectively. Despite limitations associated with identified bias, the review provides a comprehensive analysis of preclinical in vitro and in vivo studies focused on manufacturing and application of Mg alloys in orthopedics. This attests to the continuous evolution of research related to Mg alloy modifications (e.g., AZ91, LAE442 and WE43) and micro- and nanocoatings (e.g., MAO and MgF2), which are developed to improve the degradation rate required for long-term mechanical resistance to loading and excellent osseointegration with bone tissue, thereby promoting functional bone regeneration. Further research is required to deeply verify the safety and efficacy of Mg alloys.
Collapse
Affiliation(s)
- Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (D.B.); (A.D.L.); (V.C.); (L.R.); (A.C.); (M.S.)
| | - Daniele Bellavia
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (D.B.); (A.D.L.); (V.C.); (L.R.); (A.C.); (M.S.)
| | - Angela De Luca
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (D.B.); (A.D.L.); (V.C.); (L.R.); (A.C.); (M.S.)
| | - Viviana Costa
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (D.B.); (A.D.L.); (V.C.); (L.R.); (A.C.); (M.S.)
| | - Lavinia Raimondi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (D.B.); (A.D.L.); (V.C.); (L.R.); (A.C.); (M.S.)
| | - Aurora Cordaro
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (D.B.); (A.D.L.); (V.C.); (L.R.); (A.C.); (M.S.)
| | - Maria Sartori
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (D.B.); (A.D.L.); (V.C.); (L.R.); (A.C.); (M.S.)
| | - Silvio Terrando
- Ortopedia Generale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (S.T.); (A.T.); (G.P.)
| | - Angelo Toscano
- Ortopedia Generale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (S.T.); (A.T.); (G.P.)
| | - Giovanni Pignatti
- Ortopedia Generale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (S.T.); (A.T.); (G.P.)
| | - Milena Fini
- Direzione Scientifica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy;
| |
Collapse
|
2
|
Neunzehn J, Alt F, Wiesmann HP, Kruppke B. Osteogenic stimulation of osteoprogenitors by putamen ovi peptides and hyaluronic acid. Head Face Med 2023; 19:34. [PMID: 37553683 PMCID: PMC10410967 DOI: 10.1186/s13005-023-00380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Eggshell peptides (EP) majorly contribute to rapid bone building in chicks, wherefore this paper investigated their potential for stimulating osteogenesis in vitro. In this study, the effects of EP, also called putamen ovi peptides and a combination of hyaluronic acid with EP in cell culture medium were tested towards proliferation, differentiation, gene expression and mineralization of bovine osteoprogenitors and primary human osteoblasts. The influence of EP at concentrations of 0.005 g/L, 0.5 g/L and 0.5 g/L with 0.25% hyaluronic acid was analyzed using immunocytochemical staining of bone-specific matrix proteins, namely collagen type I, osteonectin, osteopontin and osteocalcin, to prove osteoblastic differentiation. Additionally, Richardson-staining was performed. All tests revealed a superior osteoblastic differentiation with EP at 0.5 g/L after 5 days of cultivation. Hyaluronic acid alone showed controversial results and partially constrained osteoblastic differentiation in combination with EP to a level as low as for pure EP at 0.005 g/L. Of particular interest is the osteoblast-typical mineralization, as an important indicator of bone formation, which was measured indirectly via the calcium concentration after cultivation over 4 weeks. The mineralization showed an increase by a factor of 286 during the cultivation of primary human osteoblasts with hyaluronic acid and EP. Meanwhile, cell cultures treated with EP (0.5 g/L) only showed an 80-fold increase in calcium concentration.The influence of EP (0.5 g/L) on primary human osteoblasts was investigated by gene expression after 2 weeks of cultivation. Microarray and qRT-PCR analysis showed a strongly increased expression of main important genes in bone formation, bone regeneration and the physiological bone remodelling processes. Namely, BMP 2, osteopontin and the matrix metalloproteinases 1 and 9, were present during in vitro osteoprogenitor culture with EP. By explicitly underlining the potential of eggshell peptides for stimulating osteogenesis, as well as emphasizing complex and controversial interaction with hyaluronan, this manuscript is relevant for developing new functionalized biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Jörg Neunzehn
- Geistlich Biomaterials Vertriebsgesellschaft mbH, Schöckstraße 4, 76534, Baden-Baden, Germany
| | - Franziska Alt
- Technische Universität Dresden, Institute of Materials Science, Max Bergmann Center of Biomaterials, Budapester Straße 27, Dresden, 01069, Germany
| | - Hans-Peter Wiesmann
- Technische Universität Dresden, Institute of Materials Science, Max Bergmann Center of Biomaterials, Budapester Straße 27, Dresden, 01069, Germany
| | - Benjamin Kruppke
- Technische Universität Dresden, Institute of Materials Science, Max Bergmann Center of Biomaterials, Budapester Straße 27, Dresden, 01069, Germany.
| |
Collapse
|
3
|
He R, Sui J, Wang G, Wang Y, Xu K, Qin S, Xu S, Ji F, Zhang H. Polydopamine and hyaluronic acid immobilisation on vancomycin-loaded titanium nanotube for prophylaxis of implant infections. Colloids Surf B Biointerfaces 2022; 216:112582. [PMID: 35617877 DOI: 10.1016/j.colsurfb.2022.112582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/11/2022] [Accepted: 05/15/2022] [Indexed: 01/03/2023]
Abstract
Titanium nanotube (Ti-NT) is an attractive substrate for local drug delivery, however, it is difficult to control the burst drug release and achieve sustained release from these nanotubes. In the present study, we investigated the feasibility of controlling drug release from Ti-NT within polydopamine and hyaluronic acid films, to achieve antibacterial activity and osteogenic promotion. Vancomycin was loaded into the Ti-NT by lyophilisation. Dopamine and hyaluronic acid were immobilized on the vancomycin-loaded Ti-NT surface through alternate deposition technique. The anti-infective and osteogenic abilities of the polydopamine and hyaluronic acid-modified Ti-NT were then investigated. Our results demonstrated that polydopamine and hyaluronic acid-modified Ti-NT exhibited improved drug loading and release control for 7 days. Compared with the vancomycin-loaded Ti-NT, the polydopamine and hyaluronic acid-modified Ti-NT exhibited better antibacterial ability, and the hyaluronic acid-modified Ti-NT promoted the osteogenic differentiation of rat bone marrow stem cells. Our results demonstrated that Ti-NT biofunctionalized with polydopamine and hyaluronic acid can help overcome the limitations of Ti-NT, by improving drug loading, antibacterial activity and osteogenic ability.
Collapse
Affiliation(s)
- Rongzhi He
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, China
| | - Junhao Sui
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, China
| | - Guangchao Wang
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, China
| | - Yang Wang
- Department of Orthopedics, Seventh medical center of PLA general hospital, Beijing, China
| | - Kaihang Xu
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, China
| | - Sheng Qin
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, China
| | - Shuogui Xu
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, China
| | - Fang Ji
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hao Zhang
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, China.
| |
Collapse
|
4
|
Della Sala F, di Gennaro M, Lista G, Messina F, Ambrosio L, Borzacchiello A. Effect of Hyaluronic Acid on the Differentiation of Mesenchymal Stem Cells into Mature Type II Pneumocytes. Polymers (Basel) 2021; 13:polym13172928. [PMID: 34502968 PMCID: PMC8433838 DOI: 10.3390/polym13172928] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hyaluronic acid (HA) is an essential component of the extracellular matrix (ECM) of the healthy lung, playing an important role in the structure of the alveolar surface stabilizing the surfactant proteins. Alveolar type II (ATII) cells are the fundamental element of the alveolus, specializing in surfactant production. ATII cells represent the main target of lung external lesion and a cornerstone in the repair process of pulmonary damage. In this context, knowledge of the factors influencing mesenchymal stem cell (MSC) differentiation in ATII cells is pivotal in fulfilling therapeutic strategies based on MSCs in lung regenerative medicine. To achieve this goal, the role of HA in promoting the differentiation of MSCs in mature Type II pneumocytes capable of secreting pulmonary surfactant was evaluated. Results demonstrated that HA, at a specific molecular weight can greatly increase the expression of lung surfactant protein, indicating the ability of HA to influence MSC differentiation in ATII cells.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (M.d.G.); (L.A.)
| | - Mario di Gennaro
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (M.d.G.); (L.A.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “L. Vanvitelli”, 81100 Caserta, Italy
| | - Gianluca Lista
- Neonatologia e Terapia Intensiva Neonatale, Ospedale dei Bambini “Vittore Buzzi”, 20154 Milan, Italy;
| | | | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (M.d.G.); (L.A.)
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (M.d.G.); (L.A.)
- Correspondence:
| |
Collapse
|
5
|
Kyyak S, Pabst A, Heimes D, Kämmerer PW. The Influence of Hyaluronic Acid Biofunctionalization of a Bovine Bone Substitute on Osteoblast Activity In Vitro. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2885. [PMID: 34072146 PMCID: PMC8198444 DOI: 10.3390/ma14112885] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Bovine bone substitute materials (BSMs) are used for oral bone regeneration. The objective was to analyze the influence of BSM biofunctionalization via hyaluronic acid (HA) on human osteoblasts (HOBs). BSMs with ± HA were incubated with HOBs including HOBs alone as a negative control. On days 3, 7 and 10, cell viability, migration and proliferation were analyzed by fluorescence staining, scratch wound assay and MTT assay. On days 3, 7 and 10, an increased cell viability was demonstrated for BSM+ compared with BSM- and the control (each p ≤ 0.05). The cell migration was enhanced for BSM+ compared with BSM- and the control after day 3 and day 7 (each p ≤ 0.05). At day 10, an accelerated wound closure was found for the control compared with BSM+/- (each p < 0.05). The highest proliferation rate was observed for BSM+ on day 3 (p ≤ 0.05) followed by BSM- and the control (each p ≤ 0.05). At day 7, a non-significantly increased proliferation was shown for BSM+ while the control was higher than BSM- (each p < 0.05). The least proliferation activity was observed for BSM- (p < 0.05) at day 10. HA biofunctionalization of the BSMs caused an increased HOB activity and might represent a promising alternative to BSM- in oral bone regeneration.
Collapse
Affiliation(s)
- Solomiya Kyyak
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany; (S.K.); (D.H.)
| | - Andreas Pabst
- Department of Oral- and Maxillofacial Surgery, Federal Armed Forces Hospital, 56072 Koblenz, Germany;
| | - Diana Heimes
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany; (S.K.); (D.H.)
| | - Peer W. Kämmerer
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany; (S.K.); (D.H.)
| |
Collapse
|
6
|
Multifunctional natural polymer-based metallic implant surface modifications. Biointerphases 2021; 16:020803. [PMID: 33906356 DOI: 10.1116/6.0000876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy traumas could cause critical damage to bone, which will require permanent implants to recover while functionally integrating with the host bone. Critical sized bone defects necessitate the use of bioactive metallic implants. Because of bioinertness, various methods involving surface modifications such as surface treatments, the development of novel alloys, bioceramic/bioglass coatings, and biofunctional molecule grafting have been utilized to effectively integrate metallic implants with a living bone. However, the applications of these methods demonstrated a need for an interphase layer improving bone-making to overcome two major risk factors: aseptic loosening and peri-implantitis. To accomplish a biologically functional bridge with the host to prevent loosening, regenerative cues, osteoimmunomodulatory modifications, and electrochemically resistant layers against corrosion appeared as imperative reinforcements. In addition, interphases carrying antibacterial cargo were proven to be successful against peri-implantitis. In the literature, metallic implant coatings employing natural polymers as the main matrix were presented as bioactive interphases, enabling rapid, robust, and functional osseointegration with the host bone. However, a comprehensive review of natural polymer coatings, bridging and grafting on metallic implants, and their activities has not been reported. In this review, state-of-the-art studies on multifunctional natural polymer-based implant coatings effectively utilized as a bone tissue engineering (BTE) modality are depicted. Protein-based, polysaccharide-based coatings and their combinations to achieve better osseointegration via the formation of an extracellular matrix-like (ECM-like) interphase with gap filling and corrosion resistance abilities are discussed in detail. The hypotheses and results of these studies are examined and criticized, and the potential future prospects of multifunctional coatings are also proposed as final remarks.
Collapse
|
7
|
Perumal G, Ramasamy B, Nandkumar A M, Dhanasekaran S, Ramasamy S, Doble M. Bilayer nanostructure coated AZ31 magnesium alloy implants: in vivo reconstruction of critical-sized rabbit femoral segmental bone defect. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 29:102232. [PMID: 32562860 DOI: 10.1016/j.nano.2020.102232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
Healing or reconstruction of critical-sized bone defects is still challenging in orthopaedic practice. In this study, we developed a new approach to control the degradation and improve the bone regeneration of the AZ31 magnesium substrate, fabricated as mesh cage implants. Subsequently, bilayer nanocomposite coating was carried out using polycaprolactone (PCL) and nano-hydroxyapatite (nHA) by dip-coating and electrospinning. Lastly, the healing capacity of the implants was studied in New Zealand White (NZW) rabbit critical-sized femur bone defects. X-ray analysis showed the coated implant group bridged and healed the critical defects 100% during four weeks of post-implantation. Micro-computed tomography (Micro-CT) study showed higher total bone volume (21.10%), trabecular thickness (0.73), and total porosity (85.71%) with bilayer coated implants than uncoated. Our results showed that nanocomposite coated implants controlled the in vivo degradation and improved bioactivity. Hence, the coated implants can be used as a promising bioresorbable implant for critical segmental bone defect repair applications.
Collapse
Affiliation(s)
- Govindaraj Perumal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Boopalan Ramasamy
- Department of Orthopaedics/Centre for Stem Cell Research, Christian Medical College, Vellore, India; Department of Orthopaedics, Royal Darwin Hospital, Tiwi, Australia
| | - Maya Nandkumar A
- Division of Microbial Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Sivaraman Dhanasekaran
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, India
| | | | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
8
|
Li JA, Chen L, Zhang XQ, Guan SK. Enhancing biocompatibility and corrosion resistance of biodegradable Mg-Zn-Y-Nd alloy by preparing PDA/HA coating for potential application of cardiovascular biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110607. [PMID: 32228927 DOI: 10.1016/j.msec.2019.110607] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/27/2022]
Abstract
In this paper the poly-dopamine (PDA)/hyaluronic acid (HA) coatings with different HA molecular weight (MW, 4 × 103, 1 × 105, 5 × 105 and 1 × 106 Da) were prepared onto the NaOH passivated Mg-Zn-Y-Nd alloy aiming at potential application of cardiovascular implants. The characterization of weight loss, polarization curves and surface morphology indicated that the coatings with HA MW of 1 × 105 (PDA/HA-2) and 1 × 106 Da (PDA/HA-4) significantly enhanced the corrosion resistance of Mg-Zn-Y-Nd. In vitro biological test also suggested better hemocompatibility, pro-endothelialization, anti-hyperplasia and anti-inflammation functions of the PDA/HA-2- and PDA/HA-4-coated Mg-Zn-Y-Nd alloy. Nevertheless, the in vivo implantation of SD rats' celiac artery demonstrated that the PDA/HA-2 had preferable corrosion resistance and biocompatibility.
Collapse
Affiliation(s)
- Jing-An Li
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Li Chen
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Xue-Qi Zhang
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Shao-Kang Guan
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
9
|
Qin P, Chen Y, Liu YJ, Zhang J, Chen LY, Li Y, Zhang X, Cao C, Sun H, Zhang LC. Resemblance in Corrosion Behavior of Selective Laser Melted and Traditional Monolithic β Ti-24Nb-4Zr-8Sn Alloy. ACS Biomater Sci Eng 2018; 5:1141-1149. [DOI: 10.1021/acsbiomaterials.8b01341] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peng Qin
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027, Australia
| | - Yang Chen
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yu-Jing Liu
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027, Australia
| | - Junxi Zhang
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Liang-Yu Chen
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027, Australia
- School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yuhua Li
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Xuhui Zhang
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Chongde Cao
- Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027, Australia
| | - Lai-Chang Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027, Australia
| |
Collapse
|