1
|
Man J, Shen Y, Song Y, Yang K, Pei P, Hu L. Biomaterials-mediated radiation-induced diseases treatment and radiation protection. J Control Release 2024; 370:318-338. [PMID: 38692438 DOI: 10.1016/j.jconrel.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
In recent years, the intersection of the academic and medical domains has increasingly spotlighted the utilization of biomaterials in radioactive disease treatment and radiation protection. Biomaterials, distinguished from conventional molecular pharmaceuticals, offer a suite of advantages in addressing radiological conditions. These include their superior biological activity, chemical stability, exceptional histocompatibility, and targeted delivery capabilities. This review comprehensively delineates the therapeutic mechanisms employed by various biomaterials in treating radiological afflictions impacting the skin, lungs, gastrointestinal tract, and hematopoietic systems. Significantly, these nanomaterials function not only as efficient drug delivery vehicles but also as protective agents against radiation, mitigating its detrimental effects on the human body. Notably, the strategic amalgamation of specific biomaterials with particular pharmacological agents can lead to a synergistic therapeutic outcome, opening new avenues in the treatment of radiation- induced diseases. However, despite their broad potential applications, the biosafety and clinical efficacy of these biomaterials still require in-depth research and investigation. Ultimately, this review aims to not only bridge the current knowledge gaps in the application of biomaterials for radiation-induced diseases but also to inspire future innovations and research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanhua Shen
- Experimental Animal Centre of Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215005, China
| | - Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China..
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
2
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
3
|
Kim A, Yonemoto C, Feliciano CP, Shashni B, Nagasaki Y. Antioxidant Nanomedicine Significantly Enhances the Survival Benefit of Radiation Cancer Therapy by Mitigating Oxidative Stress-Induced Side Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008210. [PMID: 33860635 DOI: 10.1002/smll.202008210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Oxidative stress-induced off-target effects limit the therapeutic window of radiation therapy. Although many antioxidants have been evaluated as radioprotective agents, none of them are in widespread clinical use, owing to the side effects of the antioxidants themselves and the lack of apparent benefit. Aiming for a truly effective radioprotective agent in radiation cancer therapy, the performance of a self-assembling antioxidant nanoparticle (herein denoted as redox nanoparticle; RNP) is evaluated in the local irradiation of a subcutaneous tumor-bearing mouse model. Since RNP is covered with a biocompatible shell layer and possesses a core-shell type structure of several tens of nanometers in size, its lifetime in the systemic circulation is prolonged. Moreover, since 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), one of the most potent antioxidants, is covalently encapsulated in the core of RNP, it exerts intense antioxidant activity and induces fewer adverse effects by avoiding leakage of the TEMPO molecules. Preadministration of RNP to the mouse model effectively mitigates side effects in normal tissues and significantly extends the survival benefit of radiation cancer therapy. Moreover, RNP pretreatment noticeably increases the apoptosis/necrosis ratio of radiation-induced cell death, a highly desirable property to reduce the chronic side effects of ionizing irradiation.
Collapse
Affiliation(s)
- Ahram Kim
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Chiaki Yonemoto
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Chitho P Feliciano
- Radiation Research Center (RRC), Philippine Nuclear Research Institute, Department of Science and Technology (DOST-PNRI), Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
- Health Physics Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Department of Science and Technology (DOST-PNRI), Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
| | - Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
4
|
Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles. Biomaterials 2021; 269:120645. [PMID: 33453633 DOI: 10.1016/j.biomaterials.2020.120645] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
In cancer, angiogenesis is a critical phenomenon of nascent blood vessel development to facilitate the oxygen and nutrient supply prerequisite for tumor progression. Therefore, targeting tumors at the angiogenesis step may be significant to prevent their advanced progression and metastasis. Although angiogenesis inhibitors can limit the further growth of tumors, complete eradication of tumors may not be possible by monotherapy alone. Therefore, a therapeutic regimen targeting both tumor growth and its vasculature is essential. Because reactive oxygen species (ROS) are fundamental to both angiogenesis and tumor growth, the use of antioxidants may be an effective dual approach to inhibit tumors. We previously confirmed that our original antioxidant nitroxide radical-containing nanoparticles (RNPs) such as pH-sensitive RNPN, and pH-insensitive RNPO, effectively attenuates the tumorigenic and metastasis potentials of triple-negative breast cancer. In this study, we further investigated the efficacy of RNPs to limit the tumor progression by inhibiting the ROS-regulated cancer angiogenesis in a triple-negative breast cancer model. Here, we confirmed that RNPs significantly inhibited in vitro angiogenesis, attributed to the downregulation of the ROS-regulated angiogenesis inducer, vascular endothelial growth factor (VEGF) in the breast cancer cell line (MDA-MB231) and human umbilical vein endothelial cells (HUVEC), which was consistent with decreased cellular ROS. TEMPOL, a low-molecular-weight (LMW) control antioxidant, exhibited anti-angiogenic effects accompanied by cytotoxicity to the endothelial cells. In an in vivo xenograft model for breast cancer, RNPs exerted significant anti-tumor effect due to the decreased expression of tumor VEGF, which prevented accumulation of the endothelial cells. It should be noted that such efficacy of RNPs was obtained with negligible off-target effects. On the other hand, TEMPOL, because of its size, exerted anti-angiogenesis effect accompanied with injuries to the kidneys, which corroborated with previous reports. Our findings imply that RNPs are more potential antioxidants than their LMW counterparts, such as TEMPOL, for the management of breast cancers.
Collapse
|
5
|
Matsumoto A, Numata K. Biomaterials Science and Engineering in Japan: Attractive, Multidisciplinary, and Essential Research Field in Japan. ACS Biomater Sci Eng 2019; 5:5559-5560. [PMID: 33405686 DOI: 10.1021/acsbiomaterials.9b01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|