1
|
Liu X, Shi Q, Qi P, Wang Z, Zhang T, Zhang S, Wu J, Guo Z, Chen J, Zhang Q. Recent advances in living cell nucleic acid probes based on nanomaterials for early cancer diagnosis. Asian J Pharm Sci 2024; 19:100910. [PMID: 38948397 PMCID: PMC11214190 DOI: 10.1016/j.ajps.2024.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 07/02/2024] Open
Abstract
The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.
Collapse
Affiliation(s)
- Xuyao Liu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Qi Shi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Peng Qi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Ziming Wang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Tongyue Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Sijia Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qiang Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
2
|
Huang L, Su Y, Zhang D, Zeng Z, Hu X, Hong S, Lin X. Recent theranostic applications of hydrogen peroxide-responsive nanomaterials for multiple diseases. RSC Adv 2023; 13:27333-27358. [PMID: 37705984 PMCID: PMC10496458 DOI: 10.1039/d3ra05020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
It is well established that hydrogen peroxide (H2O2) is associated with the initiation and progression of many diseases. With the rapid development of nanotechnology, the diagnosis and treatment of those diseases could be realized through a variety of H2O2-responsive nanomaterials. In order to broaden the application prospects of H2O2-responsive nanomaterials and promote their development, understanding and summarizing the design and application fields of such materials has attracted much attention. This review provides a comprehensive summary of the types of H2O2-responsive nanomaterials including organic, inorganic and organic-inorganic hybrids in recent years, and focused on their specific design and applications. Based on the type of disease, such as tumors, bacteria, dental diseases, inflammation, cardiovascular diseases, bone injury and so on, key examples for above disease imaging diagnosis and therapy strategies are introduced. In addition, current challenges and the outlook of H2O2-responsive nanomaterials are also discussed. This review aims to stimulate the potential of H2O2-responsive nanomaterials and provide new application ideas for various functional nanomaterials related to H2O2.
Collapse
Affiliation(s)
- Linjie Huang
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Yina Su
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Dongdong Zhang
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Zheng Zeng
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Xueqi Hu
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Shanni Hong
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Xiahui Lin
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| |
Collapse
|
3
|
Wang YB, Luo HZ, Wang CY, Guo ZQ, Zhu WH. A turn-on fluorescent probe based on π-extended coumarin for imaging endogenous hydrogen peroxide in RAW 264.7 cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Zhang D, Guo S, Li L, Shang K. H 2O 2/HOCl-based fluorescent probes for dynamically monitoring pathophysiological processes. Analyst 2020; 145:7477-7487. [PMID: 33063081 DOI: 10.1039/d0an01313g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Serving as representative reactive oxygen species (ROS), H2O2 and HOCl play crucial roles in biological metabolism and intercellular oxidation-reduction dynamic equilibrium. The overexpression of H2O2/HOCl may cause a variety of diseases, such as acute and chronic inflammation, cancer and neurodegenerative disorders. A major question in H2O2/HOCl-based pathological diagnosis is knowing how H2O2/HOCl concentrations can be accurately regulated to initiate a diagnosis and subsequently guarantee therapeutic effects in the course of medical advances. Fluorescent probes, with their great spatial and temporal resolutions, have been used in diverse pathophysiological processes and developed rapidly in the last five years. We summarise in this review the optical properties of H2O2/HOCl-responsive fluorescent probes and focus on effective distribution and dynamic monitoring by using pathophysiological models.
Collapse
Affiliation(s)
- Dan Zhang
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application, College of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | | | | | | |
Collapse
|
5
|
Efficient electrochemical biosensing of hydrogen peroxide on bimetallic Mo1-xWxS2 nanoflowers. J Colloid Interface Sci 2020; 566:248-256. [DOI: 10.1016/j.jcis.2020.01.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 12/23/2022]
|
6
|
Guan Q, Li N, Shi L, Yu C, Gao X, Yang J, Guo Y, Li P, Zhu X. Aggregation-Induced Emission Fluorophore-Based Molecular Beacon for Differentiating Tumor and Normal Cells by Detecting the Specific and False-Positive Signals. ACS Biomater Sci Eng 2019; 5:3618-3630. [DOI: 10.1021/acsbiomaterials.9b00627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qinghua Guan
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Second Road, Shanghai 200025, China
| | - Nan Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai 200032, China
| | - Leilei Shi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xihui Gao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiapei Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanyuan Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peiyong Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Second Road, Shanghai 200025, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|