1
|
Singh A, Das SS, Verma PRP, Ruokolainen J, Kesari KK, Singh SK. Characterization and Exploration of Placket-Burman-Designed Porous Calcium Carbonate (Vaterite) Microparticles. ACS OMEGA 2023; 8:44611-44623. [PMID: 38046299 PMCID: PMC10688156 DOI: 10.1021/acsomega.3c05050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
The objective of the research was to identify significant variables that impact the porosity-related properties of CaCO3 particles. The Placket-Burman design was employed to screen multiple variables, including pH, molar concentrations of calcium chloride and sodium carbonate, temperature, concentration of Gelucire 44/14, Cremophor RH40, Solutol HS15, Labrasol, mixing rate, reaction time, and order of addition. The response variables were surface area, pore radius, and pore volume. Influential methodologies such as XRD, FTIR, Raman spectroscopy, and TGA were utilized to validate the precipitate type. The BET surface area ranged from 1.5 to 16.14 m2/g, while the pore radius varied from 2.62 to 6.68 nm, and the pore volume exhibited a range of 2.43 to 37.97 cc/gm. Vaterite structures with spherical mesoporous characteristics were observed at high pH, whereas calcite formations occurred at low pH. The order of addition impacted the surface area but did not affect the pore volume. To maximize the surface area, a lower reaction time and molar concentrations of sodium carbonate were found to be advantageous. The pore radius was influenced by the pH, surfactants, and reaction conditions. The sediments were categorized based on the percentage of vaterite formation. The instrumental techniques effectively characterized the precipitates and provided a valuable complementary analysis.
Collapse
Affiliation(s)
- Avi Singh
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Sabya Sachi Das
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand 248009, India
| | - Priya Ranjan Prasad Verma
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
- Research
and Development Cell, Lovely Professional
University, Phagwara, Punjab 144411, India
| | - Sandeep Kumar Singh
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
2
|
Carrêlo H, Cidade MT, Borges JP, Soares P. Gellan Gum/Alginate Microparticles as Drug Delivery Vehicles: DOE Production Optimization and Drug Delivery. Pharmaceuticals (Basel) 2023; 16:1029. [PMID: 37513940 PMCID: PMC10384707 DOI: 10.3390/ph16071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Gellan gum is a biocompatible and easily accessible polysaccharide with excellent properties to produce microparticles as drug delivery systems. However, the production methods often fail in reproducibility, compromising the translational potential of such systems. In this work, the production of gellan gum-based microparticles was optimized using the coaxial air flow method, and an inexpensive and reproducible production method. A design of experiments was used to identify the main parameters that affect microparticle production and optimization, focusing on diameter and dispersibility. Airflow was the most significant factor for both parameters. Pump flow affected the diameter, while the gellan gum/alginate ratio affected dispersibility. Microparticles were revealed to be sensitive to pH with swelling, degradation, and encapsulation efficiency affected by pH. Using methylene blue as a model drug, higher encapsulation, and swelling indexes were obtained at pH 7.4, while a more pronounced release occurred at pH 6.5. Within PBs solutions, the microparticles endured up to two months. The microparticle release profiles were studied using well-known models, showing a Fickian-type release, but with no alteration by pH. The developed microparticles showed promising results as drug-delivery vehicles sensitive to pH.
Collapse
Affiliation(s)
- Henrique Carrêlo
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| | - Maria Teresa Cidade
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| | - João Paulo Borges
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| | - Paula Soares
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Gonzalez-Obeso C, Jane Hartzell E, Albert Scheel R, Kaplan DL. Delivering on the promise of recombinant silk-inspired proteins for drug delivery. Adv Drug Deliv Rev 2023; 192:114622. [PMID: 36414094 PMCID: PMC9812964 DOI: 10.1016/j.addr.2022.114622] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Effective drug delivery is essential for the success of a medical treatment. Polymeric drug delivery systems (DDSs) are preferred over systemic administration of drugs due to their protection capacity, directed release, and reduced side effects. Among the numerous polymer sources, silks and recombinant silks have drawn significant attention over the past decade as DDSs. Native silk is produced from a variety of organisms, which are then used as sources or guides of genetic material for heterologous expression or engineered designs. Recombinant silks bear the outstanding properties of natural silk, such as processability in aqueous solution, self-assembly, drug loading capacity, drug stabilization/protection, and degradability, while incorporating specific properties beneficial for their success as DDS, such as monodispersity and tailored physicochemical properties. Moreover, the on-demand inclusion of sequences that customize the DDS for the specific application enhances efficiency. Often, inclusion of a drug into a DDS is achieved by simple mixing or diffusion and stabilized by non-specific molecular interactions; however, these interactions can be improved by the incorporation of drug-binding peptide sequences. In this review we provide an overview of native sources for silks and silk sequences, as well as the design and formulation of recombinant silk biomaterials as drug delivery systems in a variety of formats, such as films, hydrogels, porous sponges, or particles.
Collapse
Affiliation(s)
- Constancio Gonzalez-Obeso
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Emily Jane Hartzell
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Ryan Albert Scheel
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA.
| |
Collapse
|
4
|
Elango J, Lijnev A, Zamora-Ledezma C, Alexis F, Wu W, Marín JMG, Sanchez de Val JEM. The Relationship of Rheological Properties and the Performance of Silk Fibroin Hydrogels in Tissue Engineering Application. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Fang X, Wang C, Zhou S, Cui P, Hu H, Ni X, Jiang P, Wang J. Hydrogels for Antitumor and Antibacterial Therapy. Gels 2022; 8:gels8050315. [PMID: 35621613 PMCID: PMC9141473 DOI: 10.3390/gels8050315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
As a highly absorbent and hydrophobic material with a three-dimensional network structure, hydrogels are widely used in biomedical fields for their excellent biocompatibility, low immunogenicity, adjustable physicochemical properties, ability to encapsulate a variety of drugs, controllability, and degradability. Hydrogels can be used not only for wound dressings and tissue repair, but also as drug carriers for the treatment of tumors. As multifunctional hydrogels are the focus for many researchers, this review focuses on hydrogels for antitumor therapy, hydrogels for antibacterial therapy, and hydrogels for co-use in tumor therapy and bacterial infection. We highlighted the advantages and representative applications of hydrogels in these fields and also outlined the shortages and future orientations of this useful tool, which might give inspirations for future studies.
Collapse
Affiliation(s)
- Xiuling Fang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou 213003, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Xinye Ni
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou 213003, China
- Correspondence: (X.N.); (P.J.); (J.W.)
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
- Correspondence: (X.N.); (P.J.); (J.W.)
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
- Correspondence: (X.N.); (P.J.); (J.W.)
| |
Collapse
|
6
|
Injectable Composite Systems Based on Microparticles in Hydrogels for Bioactive Cargo Controlled Delivery. Gels 2021; 7:gels7030147. [PMID: 34563033 PMCID: PMC8482158 DOI: 10.3390/gels7030147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Engineering drug delivery systems (DDS) aim to release bioactive cargo to a specific site within the human body safely and efficiently. Hydrogels have been used as delivery matrices in different studies due to their biocompatibility, biodegradability, and versatility in biomedical purposes. Microparticles have also been used as drug delivery systems for similar reasons. The combination of microparticles and hydrogels in a composite system has been the topic of many research works. These composite systems can be injected in loco as DDS. The hydrogel will serve as a barrier to protect the particles and retard the release of any bioactive cargo within the particles. Additionally, these systems allow different release profiles, where different loads can be released sequentially, thus allowing a synergistic treatment. The reported advantages from several studies of these systems can be of great use in biomedicine for the development of more effective DDS. This review will focus on in situ injectable microparticles in hydrogel composite DDS for biomedical purposes, where a compilation of different studies will be analysed and reported herein.
Collapse
|
7
|
Liu H, Talebian S, Vine KL, Li Z, Foroughi J. Implantable coaxial nanocomposite biofibers for local chemo‐photothermal combinational cancer therapy. NANO SELECT 2021. [DOI: 10.1002/nano.202100124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou P. R. China
| | - Sepehr Talebian
- Intelligent Polymer Research Institute University of Wollongong NSW Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW Australia
| | - Kara L. Vine
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW Australia
- School of Chemistry and Molecular Bioscience Faculty of Science Medicine and Health University of Wollongong Wollongong NSW Australia
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou P. R. China
| | - Javad Foroughi
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW Australia
- School of Electrical, Computer and Telecommunications Engineering Faculty of Engineering and Information Sciences University of Wollongong NSW Australia
- University of Essen and the Westgerman Heart and Vascular Center in Germany, University of Duisburg‐Essen Essen Germany
| |
Collapse
|
8
|
Zheng H, Zuo B. Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B 2021; 9:1238-1258. [PMID: 33406183 DOI: 10.1039/d0tb02099k] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past decade, the hydrogels prepared from silk fibroin have received immense research attention due to the advantages of safe nature, biocompatibility, controllable degradation and capability to combine with other materials. They have broad application prospects in biomedicine and other fields. However, the traditional silk protein hydrogels have a simple network structure and single functionality, thus, leading to poor adaptability towards complex application environments. As a result, the application fields and development have been significantly restricted. However, the development of functional silk protein hydrogels has provided the opportunities to overcome the limitations of the silk protein hydrogels. In recent years, the functional design of the silk protein hydrogels and their potential applications have attracted the attention of scholars worldwide. Nevertheless, a comprehensive review on functional silk protein hydrogels is missing so far. In order to gain an in-depth understanding of the development status of the functional silk protein hydrogels, this article reviews the current status of the preparation, properties and application of the functional silk protein hydrogels. The article first briefly introduces the current cross-linking methods (including physical and chemical cross-linking), principles, advantages and limitations of the silk protein hydrogels. Subsequently, the types of functional silk protein hydrogels (e.g., high strength, injectable, self-healing, adhesive, conductive, environmental stimuli-responsive, 3D printable, etc.) and design principles for functional implementation have been introduced. Next, based on the advantages of the various functional aspects of the silk protein hydrogels, the applications of these hydrogels in the biomedical field (tissue engineering, sustained drug release, wound repair, adhesives, etc.) and bioelectronics are reviewed. Finally, the development prospects and challenges associated with silk protein functional hydrogels have been analyzed. It is hoped that this study will contribute towards the future innovation of the silk protein hydrogels by promoting the rational design of new mechanisms and successful realization of the target applications.
Collapse
Affiliation(s)
- Haiyan Zheng
- School of Textile and Clothing Engineering, Soochow University, Suzhou, 215100, China.
| | - Baoqi Zuo
- School of Textile and Clothing Engineering, Soochow University, Suzhou, 215100, China.
| |
Collapse
|
9
|
Narayan OP, Mu X, Hasturk O, Kaplan DL. Dynamically tunable light responsive silk-elastin-like proteins. Acta Biomater 2021; 121:214-223. [PMID: 33326881 PMCID: PMC7856074 DOI: 10.1016/j.actbio.2020.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Dynamically tunable biomaterials are of particular interest in the field of biomedical engineering because of the potential utility for shape-change materials, drug and cell delivery and tissue regeneration. Stimuli-responsive proteins formed into hydrogels are potential candidates for such systems, due to the genetic tailorability and control over structure-function relationships. Here we report the synthesis of genetically engineered Silk-Elastin-Like Protein (SELP) photoresponsive hydrogels. Polymerization of the SELPs and monomeric adenosylcobalamin (AdoB12)-dependent photoreceptor C-terminal adenosylcobalamin binding domain (CarHC) was achieved using genetically encoded SpyTag-SpyCatcher peptide-protein pairs under mild physiological conditions. The hydrogels exhibited a partial collapse of the crosslinked molecular network with both decreased loss and storage moduli upon exposure to visible light. The materials were also evaluated for cytotoxicity and the encapsulation and release of L929 murine fibroblasts from 3D cultures. The design of these photo-responsible proteins provides new stimuli-responsive SELP-CarHC hydrogels for dynamically tunable protein-based materials.
Collapse
Affiliation(s)
- Om Prakash Narayan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
10
|
Rizzo F, Kehr NS. Recent Advances in Injectable Hydrogels for Controlled and Local Drug Delivery. Adv Healthc Mater 2021; 10:e2001341. [PMID: 33073515 DOI: 10.1002/adhm.202001341] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Injectable hydrogels have received considerable interest in the biomedical field due to their potential applications in minimally invasive local drug delivery, more precise implantation, and site-specific drug delivery into poorly reachable tissue sites and into interface tissues, where wound healing takes a long time. Injectable hydrogels, such as in situ forming and/or shear-thinning hydrogels, can be generated using chemically and/or physically crosslinked hydrogels. Yet, for controlled and local drug delivery applications, the ideal injectable hydrogel should be able to provide controlled and sustained release of drug molecules to the target site when needed and should limit nonspecific drug molecule distribution in healthy tissues. Thus, such hydrogels should sense the environmental changes that arise in disease states and be able to release the optimal amount of drug over the necessary time period to the target region. To address this, researchers have designed stimuli-responsive injectable hydrogels. Stimuli-responsive hydrogels change their shape or volume when they sense environmental stimuli, e.g., pH, temperature, light, electrical signals, or enzymatic changes, and deliver an optimal concentration of drugs to the target site without affecting healthy tissues.
Collapse
Affiliation(s)
- Fabio Rizzo
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC) Consiglio Nazionale delle Ricerche (CNR) via Fantoli 16/15 Milan 20138 Italy
- Organic Chemistry Institute Westfälische Wilhelms‐Universität Münster Corrensstr. 36 Münster 48149 Germany
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Str. 10 Münster 48149 Germany
| | - Nermin Seda Kehr
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Str. 10 Münster 48149 Germany
- Physikalisches Institut Westfälische Wilhelms‐Universität Münster Wilhelm‐Klemm‐Str. 10 Münster 48149 Germany
| |
Collapse
|