1
|
Mainik P, Aponte‐Santamaría C, Fladung M, Curticean RE, Wacker I, Hofhaus G, Bastmeyer M, Schröder RR, Gräter F, Blasco E. Responsive 3D Printed Microstructures Based on Collagen Folding and Unfolding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408597. [PMID: 39604251 PMCID: PMC11753499 DOI: 10.1002/smll.202408597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Indexed: 11/29/2024]
Abstract
Mimicking extracellular matrices holds great potential for tissue engineering in biological and biomedical applications. A key compound for the mechanical stability of these matrices is collagen, which also plays an important role in many intra- and intercellular processes. Two-photon 3D laser printing offers structuring of these matrices with subcellular resolution. So far, efforts on 3D microprinting of collagen have been limited to simple geometries and customized set-ups. Herein, an easily accessible approach is presented using a collagen type I methacrylamide (ColMA) ink system which can be stored at room temperature and be precisely printed using a commercial two-photon 3D laser printer. The formulation and printing parameters are carefully optimized enabling the manufacturing of defined 3D microstructures. Furthermore, these printed microstructures show a fully reversible response upon heating and cooling in multiple cycles, indicating successful collagen folding and unfolding. This experimental observation has been supported by molecular dynamics simulations. Thus, the study opens new perspectives for designing new responsive biomaterials for 4D (micro)printing.
Collapse
Affiliation(s)
- Philipp Mainik
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
- Organic Chemistry Institute (OCI)Heidelberg University69120HeidelbergGermany
| | | | - Magdalena Fladung
- Cell and NeurobiologyZoological InstituteKarlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | | | - Irene Wacker
- BioQuantHeidelberg University69120HeidelbergGermany
| | - Götz Hofhaus
- BioQuantHeidelberg University69120HeidelbergGermany
| | - Martin Bastmeyer
- Cell and NeurobiologyZoological InstituteKarlsruhe Institute of Technology (KIT)76131KarlsruheGermany
- Institute for Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP)Karlsruhe Institute of Technology (KIT)76344KarlsruheGermany
| | | | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies (HITS)69118HeidelbergGermany
- Interdisciplinary Center for Scientific Computing (IWR)Heidelberg University69120HeidelbergGermany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
- Organic Chemistry Institute (OCI)Heidelberg University69120HeidelbergGermany
| |
Collapse
|
2
|
Kam D, Rulf O, Reisinger A, Lieberman R, Magdassi S. 3D printing by stereolithography using thermal initiators. Nat Commun 2024; 15:2285. [PMID: 38480705 PMCID: PMC10937977 DOI: 10.1038/s41467-024-46532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Additive manufacturing technologies based on stereolithography rely on initiating spatial photopolymerization by using photoinitiators activated by UV-visible light. Many applications requiring printing in water are limited since water-soluble photoinitiators are scarce, and their price is skyrocketing. On the contrary, thermal initiators are widely used in the chemical industry for polymerization processes due to their low cost and simplicity of initiation by heat at low temperatures. However, such initiators were never used in 3D printing technologies, such as vat photopolymerization stereolithography, since localizing the heat at specific printing voxels is impossible. Here we propose using a thermal initiator for 3D printing for localized polymerization processes by near-infrared and visible light irradiation without conventional photoinitiators. This is enabled by using gold nanorods or silver nanoparticles at very low concentrations as photothermal converters in aqueous and non-aqueous mediums. Our proof of concept demonstrates the fabrication of hydrogel and polymeric objects using stereolithography-based 3D printers, vat photopolymerization, and two-photon printing.
Collapse
Affiliation(s)
- Doron Kam
- The Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Omri Rulf
- The Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Amir Reisinger
- The Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Rama Lieberman
- The Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Shlomo Magdassi
- The Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
3
|
Song D, Husari A, Kotz-Helmer F, Tomakidi P, Rapp BE, Rühe J. Two-Photon Direct Laser Writing of 3D Scaffolds through C, H-Insertion Crosslinking in a One-Component Material System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306682. [PMID: 38059850 DOI: 10.1002/smll.202306682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Indexed: 12/08/2023]
Abstract
The popularity of two-photon direct laser writing in biological research is remarkable as this technique is capable of 3D fabrication of microstructures with unprecedented control, flexibility and precision. Nevertheless, potential impurities such as residual monomers and photoinitiators remaining unnoticed from the photopolymerization in the structures pose strong challenges for biological applications. Here, the first use of high-precision 3D microstructures fabricated from a one-component material system (without monomers and photoinitiators) as a 3D cell culture platform is demonstrated. The material system consists of prepolymers with built- in crosslinker motieties, requiring only aliphatic C, H units as reaction partners following two-photon excitation. The material is written by direct laser writing using two-photon processes in a solvent-free state, which enables the generation of structures at a rapid scan speed of up to 500 mm s-1 with feature sizes scaling down to few micrometers. The generated structures possess stiffnesses close to those of common tissue and demonstrate excellent biocompatibility and cellular adhesion without any additional modification. The demonstrated approach holds great promise for fabricating high-precision complex 3D cell culture scaffolds that are safe in biological environments.
Collapse
Affiliation(s)
- Dan Song
- Cluster of Excellence livMatS @ FIT-Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Chemistry & Physics of Interfaces (CPI), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Frederik Kotz-Helmer
- Laboratory of Process Technology (NeptunLab), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Bastian E Rapp
- Cluster of Excellence livMatS @ FIT-Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Process Technology (NeptunLab), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Cluster of Excellence livMatS @ FIT-Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Chemistry & Physics of Interfaces (CPI), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| |
Collapse
|
4
|
Serien D, Narazaki A, Sugioka K. Towards understanding the mechanism of 3D printing using protein: femtosecond laser direct writing of microstructures made from homopeptides. Acta Biomater 2023; 164:139-150. [PMID: 37062438 DOI: 10.1016/j.actbio.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Femtosecond laser direct write (fs-LDW) is a promising technology for three-dimensional (3D) printing due to its high resolution, flexibility, and versatility. A protein solution can be used as a precursor to fabricate 3D proteinaceous microstructures that retain the protein's native function. The large diversity of protein molecules with different native functions allows diverse applications of this technology. However, our limited understanding of the mechanism of the printing process restricts the design and generation of 3D microstructures for biomedical applications. Therefore, we used eight commercially available homopeptides as precursors for fs-LDW of 3D structures. Our experimental results show that tyrosine, histidine, glutamic acid, and lysine contribute more to the fabrication process than do proline, threonine, phenylalanine, and alanine. In particular, we show that tyrosine is highly beneficial in the fabrication process. The beneficial effect of the charged amino acids glutamic acid and lysine suggests that the printing mechanism involves ions in addition to the previously proposed radical mechanism. Our results further suggest that the uneven electron density over larger amino acid molecules is key in aiding fs-LDW. The findings presented here will help generate more desired 3D proteinaceous microstructures by modifying protein precursors with beneficial amino acids. STATEMENT OF SIGNIFICANCE: Femtosecond laser direct write (fs-LDW) offers a three-dimensional (3D) printing capability for creating well-defined micro-and nanostructures. Applying this technology to proteins enables the manufacture of complex biomimetic 3D micro-and nanoarchitectures with retention of their original protein functions. To our knowledge, amino acid homo-polymers themselves have never been used as precursor for fs-LDW so far. Our studygainsseveral new insights into the 3D printing mechanism of pure protein for the first time. We believe that the experimental evidence presented greatly benefits the community of 3D printing of proteinin particular and the biomaterial science community in general. With the gained insight, we aspire toexpand the possibilitiesof biomaterial and biomedical applications of this technique.
Collapse
Affiliation(s)
- Daniela Serien
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8568, Japan
| | - Aiko Narazaki
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8568, Japan
| | - Koji Sugioka
- The Institute of Physical and Chemical Research (RIKEN), Saitama 351-01, Japan
| |
Collapse
|
5
|
Najafi Sani H, Abrinia K, Haghighipour N, George D, Remond Y, Baniassadi M. A Microfabrication Method of PCL Scaffolds for Tissue Engineering by Simultaneous Two PDMS Molds Replication. ACS Biomater Sci Eng 2021; 7:4763-4778. [PMID: 34515461 DOI: 10.1021/acsbiomaterials.1c00651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Not very far away, "tissue engineering" will become one of the most important branches of medical science for curing many types of diseases. This branch needs the cooperation of a wide range of sciences like medicine, chemistry, cellular biology, and genetic and mechanical engineering. Different parameters affect the final produced tissue, but the most important one is the quality and biocompatibility of the scaffold with the desired tissue which can provide the functionality of "native ECM" as well. The quality of the scaffold is directly dependent on its materials, design, and method of fabrication. As to the design and fabrication, there are two main categories: (a) random microporosity such as phase separation, electrospinning, and fused deposition modeling (3D printing) and (b) designed microporosity mostly achievable by stereo lithography and soft lithography. The method of fabrication implemented in this research is a novel method in soft lithography employing a type of "replica molding" with one pair of polydimethylsiloxane (PDMS) molds in contrast to traditional replica molding with just one single mold. In this operation, the solution of polycaprolactone in chloroform is initially prepared, and one droplet of the solution is placed between the molds while a preset pressure is applied to maintain the molds tightly together during the solidification of the polymer layer and vaporization of the solvent. Thus, a perfect warp and woof pattern is created. In this research, it has been approved that this is a feasible method for creating complex patterns and simple straight fiber patterns with different spacings and pore sizes. Cell attachment and migration was studied to find the optimum pore size. It was shown that the small pore size improves the cells' adhesion while reducing cell migration capability within the scaffold.
Collapse
Affiliation(s)
- Hassan Najafi Sani
- University of Tehran, School of Mechanical Engineering, College of Engineering, Tehran 1417935840, Islamic Republic of Iran
| | - Karen Abrinia
- University of Tehran, School of Mechanical Engineering, College of Engineering, Tehran 1417935840, Islamic Republic of Iran
| | | | - Daniel George
- University of Strasbourg, CNRS, ICUBE Laboratory, 67000 Strasbourg, France
| | - Yves Remond
- University of Strasbourg, CNRS, ICUBE Laboratory, 67000 Strasbourg, France
| | - Majid Baniassadi
- University of Tehran, School of Mechanical Engineering, College of Engineering, Tehran 1417935840, Islamic Republic of Iran
| |
Collapse
|
6
|
Sardini E, Serpelloni M, Tonello S. Printed Electrochemical Biosensors: Opportunities and Metrological Challenges. BIOSENSORS 2020; 10:E166. [PMID: 33158129 PMCID: PMC7694196 DOI: 10.3390/bios10110166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Printed electrochemical biosensors have recently gained increasing relevance in fields ranging from basic research to home-based point-of-care. Thus, they represent a unique opportunity to enable low-cost, fast, non-invasive and/or continuous monitoring of cells and biomolecules, exploiting their electrical properties. Printing technologies represent powerful tools to combine simpler and more customizable fabrication of biosensors with high resolution, miniaturization and integration with more complex microfluidic and electronics systems. The metrological aspects of those biosensors, such as sensitivity, repeatability and stability, represent very challenging aspects that are required for the assessment of the sensor itself. This review provides an overview of the opportunities of printed electrochemical biosensors in terms of transducing principles, metrological characteristics and the enlargement of the application field. A critical discussion on metrological challenges is then provided, deepening our understanding of the most promising trends in order to overcome them: printed nanostructures to improve the limit of detection, sensitivity and repeatability; printing strategies to improve organic biosensor integration in biological environments; emerging printing methods for non-conventional substrates; microfluidic dispensing to improve repeatability. Finally, an up-to-date analysis of the most recent examples of printed electrochemical biosensors for the main classes of target analytes (live cells, nucleic acids, proteins, metabolites and electrolytes) is reported.
Collapse
Affiliation(s)
- Emilio Sardini
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (M.S.)
| | - Mauro Serpelloni
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (M.S.)
| | - Sarah Tonello
- Department of Information Engineering, University of Padova, Via Gradenigo 6, 35131 Padova, Italy
| |
Collapse
|
7
|
Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A. Polymer-Based Scaffolds for Soft-Tissue Engineering. Polymers (Basel) 2020; 12:E1566. [PMID: 32679750 PMCID: PMC7408565 DOI: 10.3390/polym12071566] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Biomaterials have been used since ancient times. However, it was not until the late 1960s when their development prospered, increasing the research on them. In recent years, the study of biomaterials has focused mainly on tissue regeneration, requiring a biomaterial that can support cells during their growth and fulfill the function of the replaced tissue until its regeneration. These materials, called scaffolds, have been developed with a wide variety of materials and processes, with the polymer ones being the most advanced. For this reason, the need arises for a review that compiles the techniques most used in the development of polymer-based scaffolds. This review has focused on three of the most used techniques: freeze-drying, electrospinning and 3D printing, focusing on current and future trends. In addition, the advantages and disadvantages of each of them have been compared.
Collapse
Affiliation(s)
- Victor Perez-Puyana
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Mercedes Jiménez-Rosado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| |
Collapse
|
8
|
Tomal W, Ortyl J. Water-Soluble Photoinitiators in Biomedical Applications. Polymers (Basel) 2020; 12:E1073. [PMID: 32392892 PMCID: PMC7285382 DOI: 10.3390/polym12051073] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/25/2022] Open
Abstract
Light-initiated polymerization processes are currently an important tool in various industrial fields. The advancement of technology has resulted in the use of photopolymerization in various biomedical applications, such as the production of 3D hydrogel structures, the encapsulation of cells, and in drug delivery systems. The use of photopolymerization processes requires an appropriate initiating system that, in biomedical applications, must meet additional criteria such as high water solubility, non-toxicity to cells, and compatibility with visible low-power light sources. This article is a literature review on those compounds that act as photoinitiators of photopolymerization processes in biomedical applications. The division of initiators according to the method of photoinitiation was described and the related mechanisms were discussed. Examples from each group of photoinitiators are presented, and their benefits, limitations, and applications are outlined.
Collapse
Affiliation(s)
- Wiktoria Tomal
- Faculty of Chemical Engineering and Technology, Krakow University of Technology, Warszawska 24, 31-155 Krakow, Poland;
| | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology, Krakow University of Technology, Warszawska 24, 31-155 Krakow, Poland;
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Krakow, Poland
| |
Collapse
|