1
|
Li G, Chen W, Liu D, Tang S. Recent advances in medicinal chemistry strategies for the development of METTL3 inhibitors. Eur J Med Chem 2025; 290:117560. [PMID: 40147343 DOI: 10.1016/j.ejmech.2025.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification in eukaryotic cells, exerts a critical influence on RNA function and gene expression. It has attracted considerable attention within the rapidly evolving field of epitranscriptomics. METTL3 is a key enzyme for m6A modification and is essential for maintaining normal m6A levels. High expression of METTL3 is closely associated with various cancers, including gastric cancer, liver cancer, and leukemia. Inhibiting METTL3 has shown potential in slowing cancer progression, thereby driving the development of METTL3 inhibitors. In this work, we summarize recent advancements in the development of METTL3 inhibitor, with a focus on medicinal chemistry strategies employed during discovery and optimization phases. We explore the application of structure-activity relationship (SAR) studies and protein-targeted degradation techniques, while addressing key challenges associated with their characterization and clinical translation. This review underscores the therapeutic potential of METTL3 inhibitors in modulating epitranscriptomic pathways and aims to offer perspectives for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Gengwu Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shibing Tang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
2
|
Vargas-Rosales PA, Caflisch A. The physics-AI dialogue in drug design. RSC Med Chem 2025; 16:1499-1515. [PMID: 39906313 PMCID: PMC11788922 DOI: 10.1039/d4md00869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
A long path has led from the determination of the first protein structure in 1960 to the recent breakthroughs in protein science. Protein structure prediction and design methodologies based on machine learning (ML) have been recognized with the 2024 Nobel prize in Chemistry, but they would not have been possible without previous work and the input of many domain scientists. Challenges remain in the application of ML tools for the prediction of structural ensembles and their usage within the software pipelines for structure determination by crystallography or cryogenic electron microscopy. In the drug discovery workflow, ML techniques are being used in diverse areas such as scoring of docked poses, or the generation of molecular descriptors. As the ML techniques become more widespread, novel applications emerge which can profit from the large amounts of data available. Nevertheless, it is essential to balance the potential advantages against the environmental costs of ML deployment to decide if and when it is best to apply it. For hit to lead optimization ML tools can efficiently interpolate between compounds in large chemical series but free energy calculations by molecular dynamics simulations seem to be superior for designing novel derivatives. Importantly, the potential complementarity and/or synergism of physics-based methods (e.g., force field-based simulation models) and data-hungry ML techniques is growing strongly. Current ML methods have evolved from decades of research. It is now necessary for biologists, physicists, and computer scientists to fully understand advantages and limitations of ML techniques to ensure that the complementarity of physics-based methods and ML tools can be fully exploited for drug design.
Collapse
Affiliation(s)
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
3
|
Dutheuil G, Oukoloff K, Korac J, Lenoir F, El Bousmaqui M, Probst N, Lapin A, Nakhabina G, Sorlet C, Parmentier N, Karila D, Ghavtadze N, Casault P, Claridge S, Sapmaz S, Slater MJ, Fraser GL. Discovery, Optimization, and Preclinical Pharmacology of EP652, a METTL3 Inhibitor with Efficacy in Liquid and Solid Tumor Models. J Med Chem 2025; 68:2981-3003. [PMID: 39883878 DOI: 10.1021/acs.jmedchem.4c02225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
METTL3 is the RNA methyltransferase predominantly responsible for the addition of N6-methyladenosine (m6A), the most abundant modification to mRNA. The prevalence of m6A and the activity and expression of METTL3 have been linked to the appearance and progression of acute myeloid leukemia (AML), thereby making METTL3 an attractive target for cancer therapeutics. We report herein the discovery and optimization of small-molecule inhibitors of METTL3, culminating in the selection of EP652 as an in vivo proof-of-concept compound. EP652 potently inhibits the enzymatic activity of METTL3, has favorable PK parameters, and demonstrates efficacy in preclinical oncology models, indicating that pharmacological inhibition of METTL3 is a viable strategy for the treatment of liquid and solid tumors.
Collapse
Affiliation(s)
| | - Killian Oukoloff
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Julien Korac
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - François Lenoir
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | | | - Nicolas Probst
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Alexey Lapin
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Galina Nakhabina
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Catherine Sorlet
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | | | - Delphine Karila
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Nugzar Ghavtadze
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Paméla Casault
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Stephen Claridge
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Selma Sapmaz
- Cresset Biomolecular Discovery Limited, New Cambridge House, Bassingbourn Road, Litlington, Cambridgeshire SG8 0SS, United Kingdom
| | - Martin J Slater
- Cresset Biomolecular Discovery Limited, New Cambridge House, Bassingbourn Road, Litlington, Cambridgeshire SG8 0SS, United Kingdom
| | - Graeme L Fraser
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| |
Collapse
|
4
|
Li M, Chen J, Wang P, Feng E, Chen X, Gao H, Ma Z, Zhou X. Clinicopathological analysis of primary central nervous system lymphoma in patients with or without HIV infection. Ann Diagn Pathol 2024; 73:152383. [PMID: 39418717 DOI: 10.1016/j.anndiagpath.2024.152383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
The clinicopathological features of HIV-related primary central nervous system lymphoma (PCNSL) and immunocompetent primary central nervous system lymphoma (IC-PCNSL) were found to be distinct. Thirty-seven patients with HIV-related PCNSL and thirty patients with IC-PCNSL were included in our study. Hematoxylin & eosin (HE) staining, immunohistochemical detection using CD10, MUM1, CD20, Bcl-2, Bcl-6, p53, C-MYC, Ki67, methyltransferase like factor 3 (METTL3) antibodies and Epstein-Barr encoding region (EBER) in situ hybridization were performed. All of the patients were classified as the diffuse large B-cell lymphoma (DLBCL) histological type. Patients with HIV-related PCNSL were younger and more likely to be male, with elevated lactate dehydrogenase (LDH) and low sugar content in cerebrospinal fluid (CSF) compared to patients with IC-PCNSL.The positive rates of METTL3, Bcl-2, p53 and EBER were significantly higher in HIV-related PCNSL patients than in IC-PCNSL patients. Furthermore, we also found that the expression of METTL3 was lower in germinal centre B-cell (GCB)-like DLBCL (n = 7) than in non-GCB like DLBCL (n = 30) in HIV-related PCNSL (P = 0.030); however, in IC-PCNSL patients, the expression of METTL3 was not significantly different between GCB-like DLBCL and non-GCB-like DLBCL (P = 0.670). Although the manifestations are similar in PCNSL patients with and without HIV, HIV-related PCNSL differs from IC-PCNSL in terms of pathological characteristics including METTL3, Bcl-2, p53 and EBER. We therefore suggest that the pathogenesis of HIV-related PCNSL and IC-PCNSL may differ according to host immune status.
Collapse
Affiliation(s)
- Man Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jiamin Chen
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Peng Wang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Enshan Feng
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Xiangmei Chen
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Haili Gao
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Zhiyuan Ma
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| |
Collapse
|
5
|
Kaur P, Sharma P, Bhatia P, Singh M. Current insights on m6A RNA modification in acute leukemia: therapeutic targets and future prospects. Front Oncol 2024; 14:1445794. [PMID: 39600630 PMCID: PMC11590065 DOI: 10.3389/fonc.2024.1445794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
RNA modification is the critical mechanism for regulating post-transcriptional processes. There are more than 150 RNA modifications reported so far, among which N6-Methyladenosine is the most prevalent one. M6A RNA modification complex consists of 'writers', 'readers' and 'erasers' which together in a group catalyze, recognize and regulate the methylation process of RNA and thereby regulate the stability and translation of mRNA. The discovery of erasers also known as demethylases, revolutionized the research on RNA modifications as it revealed that this modification is reversible. Since then, various studies have focused on discovering the role of m6A modification in various diseases especially cancers. Aberrant expression of these 'readers', 'writers', and 'erasers' is found to be altered in various cancers resulting in disturbance of cellular homeostasis. Acute leukemias are the most common cancer found in pediatric patients and account for 20% of adult cases. Dysregulation of the RNA modifying complex have been reported in development and progression of hematopoietic malignancies. Further, targeting m6A modification is the new approach for cancer immunotherapy and is being explored extensively. This review provides detailed information about current information on the role of m6A RNA modification in acute leukemia and their therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Minu Singh
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical
Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Marquez VE. 3-Deazaneplanocin A (DZNep): A Drug That Deserves a Second Look. J Med Chem 2024; 67:17964-17979. [PMID: 39392180 DOI: 10.1021/acs.jmedchem.4c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The emerging data compiled during the past five years on 3-deazaneplanocin (DZNep) provide compelling evidence to reevaluate this drug as a better alternative over the specific catalytic inhibitors of histone methyl transferases (HTMs). The indirect mechanism of DZNep via inhibition of AdoHcy-ase, once considered a liability due to possible side effects, has now shown to be rather beneficial as additional pathways targeted by DZNep are important contributors to its superior anticancer properties. Furthermore, DZNep has demonstrated the ability to induce proteasomal degradation of its target and reduce toxicity in combination with well-established antitumor therapies in animal models. In addition, DZNep has shown important effects in suppressing fibrosis and inflammation in liver, kidney, peritoneum, and airways. Finally, inhibition of mRNA m6A methylation by DZNep suppresses the synthesis of the viral genome in SARS-Cov-2 infection and promises to have important therapeutic value when combined with its potent antiviral efficacy and anti-inflammatory effects.
Collapse
Affiliation(s)
- Victor E Marquez
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
7
|
Harrahill NJ, Hadden MK. Small molecules that regulate the N 6-methyladenosine RNA modification as potential anti-cancer agents. Eur J Med Chem 2024; 274:116526. [PMID: 38805939 DOI: 10.1016/j.ejmech.2024.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Epitranscriptomics, the field of post-translational RNA modifications, is a burgeoning domain of research that has recently received significant attention for its role in multiple diseases, including cancer. N6-methyladenosine (m6A) is the most prominent post-translational RNA modification and plays a critical role in RNA transcription, processing, translation, and metabolism. The m6A modification is controlled by three protein classes known as writers (methyltransferases), erasers (demethylases), and readers (m6A-binding proteins). Each class of m6A regulatory proteins has been implicated in cancer initiation and progression. As such, many of these proteins have been identified as potential targets for anti-cancer chemotherapeutics. In this work, we provide an overview of the role m6A-regulating proteins play in cancer and discuss the current state of small molecule therapeutics targeting these proteins.
Collapse
Affiliation(s)
- Noah J Harrahill
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269-3092, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269-3092, United States.
| |
Collapse
|
8
|
Mehmood R. Ramifications of m6A Modification on ncRNAs in Cancer. Curr Genomics 2024; 25:158-170. [PMID: 39087001 PMCID: PMC11288162 DOI: 10.2174/0113892029296712240405053201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 08/02/2024] Open
Abstract
N6-methyladenosine (m6A) is an RNA modification wherein the N6-position of adenosine is methylated. It is one of the most prevalent internal modifications of RNA and regulates various aspects of RNA metabolism. M6A is deposited by m6A methyltransferases, removed by m6A demethylases, and recognized by reader proteins, which modulate splicing, export, translation, and stability of the modified mRNA. Recent evidence suggests that various classes of non- coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long con-coding RNAs (lncRNAs), are also targeted by this modification. Depending on the ncRNA species, m6A may affect the processing, stability, or localization of these molecules. The m6A- modified ncRNAs are implicated in a number of diseases, including cancer. In this review, the author summarizes the role of m6A modification in the regulation and functions of ncRNAs in tumor development. Moreover, the potential applications in cancer prognosis and therapeutics are discussed.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Corbeski I, Vargas-Rosales PA, Bedi RK, Deng J, Coelho D, Braud E, Iannazzo L, Li Y, Huang D, Ethève-Quelquejeu M, Cui Q, Caflisch A. The catalytic mechanism of the RNA methyltransferase METTL3. eLife 2024; 12:RP92537. [PMID: 38470714 PMCID: PMC10932547 DOI: 10.7554/elife.92537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on messenger RNA (mRNA) in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a BA representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release, and suggests that the latter step is rate-limiting for METTL3. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.
Collapse
Affiliation(s)
- Ivan Corbeski
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | | | - Rajiv Kumar Bedi
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Jiahua Deng
- Department of Chemistry, Boston UniversityBostonUnited States
| | - Dylan Coelho
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Emmanuelle Braud
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Laura Iannazzo
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Yaozong Li
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Danzhi Huang
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Mélanie Ethève-Quelquejeu
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Qiang Cui
- Department of Chemistry, Boston UniversityBostonUnited States
- Department of Physics, Boston UniversityBostonUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Amedeo Caflisch
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
10
|
Errani F, Invernizzi A, Herok M, Bochenkova E, Stamm F, Corbeski I, Romanucci V, Di Fabio G, Zálešák F, Caflisch A. Proteolysis Targeting Chimera Degraders of the METTL3-14 m 6A-RNA Methyltransferase. JACS AU 2024; 4:713-729. [PMID: 38425900 PMCID: PMC10900215 DOI: 10.1021/jacsau.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Methylation of adenine N6 (m6A) is the most frequent RNA modification. On mRNA, it is catalyzed by the METTL3-14 heterodimer complex, which plays a key role in acute myeloid leukemia (AML) and other types of blood cancers and solid tumors. Here, we disclose the first proteolysis targeting chimeras (PROTACs) for an epitranscriptomics protein. For designing the PROTACs, we made use of the crystal structure of the complex of METTL3-14 with a potent and selective small-molecule inhibitor (called UZH2). The optimization of the linker started from a desfluoro precursor of UZH2 whose synthesis is more efficient than that of UZH2. The first nine PROTAC molecules featured PEG- or alkyl-based linkers, but only the latter showed cell penetration. With this information in hand, we synthesized 26 PROTACs based on UZH2 and alkyl linkers of different lengths and rigidity. The formation of the ternary complex was validated by a FRET-based biochemical assay and an in vitro ubiquitination assay. The PROTACs 14, 20, 22, 24, and 30, featuring different linker types and lengths, showed 50% or higher degradation of METTL3 and/or METTL14 measured by Western blot in MOLM-13 cells. They also showed substantial degradation on three other AML cell lines and prostate cancer cell line PC3.
Collapse
Affiliation(s)
- Francesco Errani
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Annalisa Invernizzi
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Marcin Herok
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Elena Bochenkova
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Fiona Stamm
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Ivan Corbeski
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Valeria Romanucci
- Università
degli Studi di Napoli Federico II, Via Cintia 4, Napoli I-80126, Italia
| | - Giovanni Di Fabio
- Università
degli Studi di Napoli Federico II, Via Cintia 4, Napoli I-80126, Italia
| | - František Zálešák
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|
11
|
Corbeski I, Vargas-Rosales PA, Bedi RK, Deng J, Coelho D, Braud E, Iannazzo L, Li Y, Huang D, Etheve-Quelquejeu M, Cui Q, Caflisch A. The catalytic mechanism of the RNA methyltransferase METTL3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556513. [PMID: 37732228 PMCID: PMC10508762 DOI: 10.1101/2023.09.06.556513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on mRNA in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a bisubstrate analogue representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release catalysed by METTL3, and suggests that the latter step is rate-limiting. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.
Collapse
|