1
|
Li J, Tu Y, He K, Chen C, Liang L, Ruan C, Zhang Q. Mechanistic Insights into Glycerol Oxidation to High-Value Chemicals via Metal-Based Catalysts. Molecules 2025; 30:1310. [PMID: 40142085 PMCID: PMC11945027 DOI: 10.3390/molecules30061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
The oxidation of glycerol offers a valuable route for producing high-value chemicals. This review provides an in-depth analysis of the current advancements and mechanistic insights into novel metal-based catalysts for glycerol oxidation. We discuss the catalytic roles of both precious metals (e.g., Pt, Pd, Au), noted for their high efficiency and selectivity, and cost-effective alternatives, such as Ni, Cu, and Fe. Bimetallic and metal oxide catalysts are highlighted, emphasizing synergistic effects that enhance catalytic performance. This review elucidates the key mechanism involving selective adsorption and oxidation, providing detailed insights from advanced spectroscopic and computational studies into the activation of glycerol and stabilization of key intermediates, including glyceraldehyde and dihydroxyacetone. Additionally, selective carbon-carbon bond cleavage to yield smaller, valuable molecules is addressed. Finally, we outline future research directions, emphasizing the development of innovative catalysts, deeper mechanistic understanding, and sustainable process scale-up, ultimately advancing efficient, selective, and environmentally friendly catalytic systems for glycerol valorization.
Collapse
Affiliation(s)
- Junqing Li
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518000, China; (J.L.); (Y.T.); (C.C.)
| | - Ying Tu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518000, China; (J.L.); (Y.T.); (C.C.)
| | - Kelin He
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518000, China; (J.L.); (Y.T.); (C.C.)
| | - Chao Chen
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518000, China; (J.L.); (Y.T.); (C.C.)
| | - Lixing Liang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; (L.L.); (C.R.)
| | - Chongze Ruan
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; (L.L.); (C.R.)
| | - Qitao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518000, China; (J.L.); (Y.T.); (C.C.)
| |
Collapse
|
2
|
Xu L, Geng S. Copper-Doped NiOOH for the Electrocatalytic Conversion of Glycerol to Formate via the Inhibition of the Oxygen Evolution Reaction. Inorg Chem 2025; 64:617-626. [PMID: 39716467 DOI: 10.1021/acs.inorgchem.4c03822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The combination of the electrocatalytic glycerol oxidation reaction (GOR) with the cathodic hydrogen evolution reaction serves to reduce the anodic overpotential, thereby facilitating the efficient production of hydrogen. However, the GOR is confined to a narrow potential range due to the competition of the oxygen evolution reaction (OER) at high potential. Therefore, it is necessary to develop a catalyst with a high Faraday efficiency of formate (FEFA) over a wide potential range. Herein, Cu-doped NiOOH catalysts were synthesized by electrodeposition to inhibit the competing OER during the GOR process, achieving a current density of 10 mA cm-2 at 1.278 V vs RHE, a FEFA over 70.36% within a broad potential range of 1.3 V vs RHE to 1.6 V vs RHE, and a maximum FEFA of 96.46% at 1.35 V vs RHE. In situ spectral studies and DFT calculations revealed that Cu doping slowed the *OH to *O step for the inhibition of the OER and enhanced glycerol adsorption to accelerate the GOR. A competitive reaction mechanism for boosting glycerol electro-oxidation to formate was proposed, presenting a feasible strategy for the highly selective production of electrocatalytic value-added chemicals and the sustainable production of hydrogen energy.
Collapse
Affiliation(s)
- Lixiong Xu
- Guizhou Provincial Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shuo Geng
- Guizhou Provincial Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
3
|
Lu Y, Lee BG, Lin C, Liu TK, Wang Z, Miao J, Oh SH, Kim KC, Zhang K, Park JH. Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO 4 photoanodes. Nat Commun 2024; 15:5475. [PMID: 38942757 PMCID: PMC11213950 DOI: 10.1038/s41467-024-49662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Dihydroxyacetone is the most desired product in glycerol oxidation reaction because of its highest added value and large market demand among all possible oxidation products. However, selectively oxidative secondary hydroxyl groups of glycerol for highly efficient dihydroxyacetone production still poses a challenge. In this study, we engineer the surface of BiVO4 by introducing bismuth-rich domains and oxygen vacancies (Bi-rich BiVO4-x) to systematically modulate the surface adsorption of secondary hydroxyl groups and enhance photo-induced charge separation for photoelectrochemical glycerol oxidation into dihydroxyacetone conversion. As a result, the Bi-rich BiVO4-x increases the glycerol oxidation photocurrent density of BiVO4 from 1.42 to 4.26 mA cm-2 at 1.23 V vs. reversible hydrogen electrode under AM 1.5 G illumination, as well as the dihydroxyacetone selectivity from 54.0% to 80.3%, finally achieving a dihydroxyacetone production rate of 361.9 mmol m-2 h-1 that outperforms all reported values. The surface atom customization opens a way to regulate the solar-driven organic transformation pathway toward a carbon chain-balanced product.
Collapse
Affiliation(s)
- Yuan Lu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Byoung Guan Lee
- Computational Materials Design Laboratory, Department of Chemical Engineering, Konkuk University, Seoul, the Republic of Korea
| | - Cheng Lin
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Tae-Kyung Liu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Zhipeng Wang
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jiaming Miao
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Sang Ho Oh
- Department of Energy Engineering, Institute for Energy Materials and Devices, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea
| | - Ki Chul Kim
- Computational Materials Design Laboratory, Department of Chemical Engineering, Konkuk University, Seoul, the Republic of Korea.
| | - Kan Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Ning X, Zhan L, Zhou X, Luo J, Wang Y. In-situ Bi-modified Pt towards glycerol and formic acid electro-oxidation: Effects of catalyst structure and surface microenvironment on activity and selectivity. J Colloid Interface Sci 2024; 655:920-930. [PMID: 37979297 DOI: 10.1016/j.jcis.2023.11.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The performances of glycerol electro-oxidation reaction (GOR) and formic acid electro-oxidation reaction (FAOR) catalyzed by Pt catalyst were dramatically improved by adding Bi3+ into the reaction solution. The dynamic structure and microenvironment of in-situ Bi-modified Pt and their impact on the catalytic performances were revealed. A strong correlation was established between the Bi coverage of Pt-based catalysts and their resistance to CO poisoning and performance in GOR and FAOR. When Bi3+ increased to a certain amount, a Bi-shell containing hydroxides was formed on Pt surfaces except the formation of Pt-Bi ensemble. On Pt catalyst covered with 43.9 % Bi, the peak mass-specific activities of GOR and FAOR in forward scans were 4.2 and 34.7 times that of Pt/NCNTs, respectively. The peak electrochemical active surface area (ECSA)-specific activity of FAOR in forward scan for Pt with 52.6 % Bi coverage was 80.6 times that of Pt/NCNTs. The dehydrogenation process in FAOR and the 4-electron pathway in GOR were improved for Bi-modified Pt. The experimental results and DFT calculations indicated that the positively charged Bi and structure of Pt-Bi ensemble improved the adsorption and interaction of negatively charged intermediates, and the enhanced hydroxides facilitated the oxidation and removal of toxic intermediates, such as CO.
Collapse
Affiliation(s)
- Xiaomei Ning
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China
| | - Liang Zhan
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China.
| | - Xiaosong Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China
| | - Jin Luo
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China
| | - Yanli Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China
| |
Collapse
|
5
|
Nunotani N, Takashima M, Choi YB, Uetake Y, Sakurai H, Imanaka N. Dihydroxyacetone production by glycerol oxidation under moderate condition using Pt loaded on La 1-xBi xOF solids. Chem Commun (Camb) 2023. [PMID: 37458093 DOI: 10.1039/d3cc01734f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Pt/La1-xBixOF/SBA-16 (SBA-16: Santa Barbara Amorphous no. 16) catalysts were prepared to produce dihydroxyacetone (DHA) from glycerol under moderate conditions. By using 7 wt% Pt/16 wt% La0.95Bi0.05OF/SBA-16, the DHA yield reached up to 78.4% (glycerol conversion: 100%) after reacting for 6 h at 30 °C in an atmospheric open-air system.
Collapse
Affiliation(s)
- Naoyoshi Nunotani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Masanari Takashima
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yeon-Bin Choi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuta Uetake
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuhito Imanaka
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
6
|
Xiong L, Qi H, Zhang S, Zhang L, Liu X, Wang A, Tang J. Highly Selective Transformation of Biomass Derivatives to Valuable Chemicals by Single-Atom Photocatalyst Ni/TiO 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209646. [PMID: 36721913 DOI: 10.1002/adma.202209646] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Selective CC cleavage of the biomass derivative glycerol under mild conditions is recognized as a promising yet challenging synthesis route to produce value-added chemicals. Here, a highly selective catalyst for the transformation of glycerol to the high-value product glycolaldehyde is presented, which is composed of nickel single atoms confined to the surface of titanium dioxide. Driven by light, the catalyst operates under ambient conditions using air as a green oxidant. The optimized catalyst shows a selectivity of over 60% to glycolaldehyde, resulting in 1058 µmol gCat -1 h-1 production rate, and ≈3 times higher turnover number than NiOx -nanoparticle-decorated TiO2 photocatalyst. Diverse operando and in situ spectroscopies unveil the unique function of the Ni single atom, which can significantly promote oxygen adsorption, work as an electron sink, and accelerate the production of superoxide radicals, thereby improving the selectivity toward glycolaldehyde over other by-products.
Collapse
Affiliation(s)
- Lunqiao Xiong
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Haifeng Qi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Shengxin Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Leilei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiaoyan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Aiqin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| |
Collapse
|
7
|
Hao L, Ren Q, Yang J, Luo L, Ren Y, Guo X, Zhou H, Xu M, Kong X, Li Z, Shao M. Promoting Electrocatalytic Hydrogenation of Oxalic Acid to Glycolic Acid via an Al 3+ Ion Adsorption Strategy Coupled with Ethylene Glycol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13176-13185. [PMID: 36868558 DOI: 10.1021/acsami.3c00292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrocatalytic hydrogenation (ECH) of oxalic acid (OX) to produce glycolic acid (GA), an important building block of biodegradable polymers as well as application in various branches of chemistry, has attracted extensive attention in the industry, while it still encounters challenges of low reaction rate and selectivity. Herein, we reported a cation adsorption strategy to realize the efficient ECH of OX to GA by adsorbing Al3+ ions on an anatase titanium dioxide (TiO2) nanosheet array, achieving 2-fold enhanced GA productivity (1.3 vs 0.65 mmol cm-2 h-1) with higher Faradaic efficiency (FE) (85 vs 69%) at -0.74 V vs RHE. We reveal that the Al3+ adatoms on TiO2 both act as electrophilic adsorption sites to enhance the carbonyl (C═O) adsorption of OX and glyoxylic acid (intermediate) and also promote the generation of reactive hydrogen (H*) on TiO2, thus promoting the reaction rate. This strategy is demonstrated effective for different carboxylic acids. Furthermore, we realized the coproduction of GA at the bipolar of a H-type cell by pairing ECH of OX (at cathode) and electrooxidation of ethylene glycol (at anode), demonstrating an economical manner with maximum electron economy.
Collapse
Affiliation(s)
- Leilei Hao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qinghui Ren
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiangrong Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lan Luo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Ren
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyue Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hua Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| |
Collapse
|
8
|
Xia S, Wu F, Cheng L, Bao H, Gao W, Duan J, Niu W, Xu G. Maneuvering the Peroxidase-Like Activity of Palladium-Based Nanozymes by Alloying with Oxophilic Bismuth for Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205997. [PMID: 36461731 DOI: 10.1002/smll.202205997] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Engineering the catalytic performance of nanozymes is of vital importance for their broad applications in biological analysis, cancer treatment, and environmental management. Herein, a strategy to boost the peroxidase-like activity of Pd-based nanozymes with oxophilic metallic bismuth (Bi) is demonstrated, which is based on the incorporation of oxophilic Bi in the Pd-based alloy nanocrystals (NCs). To synthesize PdBi alloy NCs, a seed-mediated method is employed with the assistance of underpotential deposition (UPD) of Bi on Pd. The strong interaction of Bi atoms with Pd surfaces favors the formation of alloy structures with controllable shapes and excellent monodispersity. More importantly, the PdBi NCs show excellent peroxidase-like activities compared with pristine Pd NCs. The structure-function correlations for the PdBi nanozymes are elucidated, and an indirect colorimetric method based on cascade reactions to determine alkaline phosphatase (ALP) is established. This method has good linear range, low detection limit, excellent selectivity, and anti-interference. Collectively, this work not only provides new insights for the design of high-efficiency nanozymes, expands the colorimetric sensing platform based on enzyme cascade reactions, but also represents a new example for UPD-directed synthesis of alloy NCs.
Collapse
Affiliation(s)
- Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lu Cheng
- National Engineering Research Center for New Material Synthesis of Rubber and Plastics, Yanshan Branch of Beijing Chemical Research Institute, Sinopec, Beijing, 102500, China
| | - Haibo Bao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wenping Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Duan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
9
|
Jiang Y, Liu Y, He Y, Li D. Insight into the Effect of Cu Species and Its Origin in Pt-Based Catalysts on Reaction Pathways of Glycerol Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yiwei Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
10
|
Othman P, Karim N, Kamarudin S. First principle study of the electronic and catalytic properties of Palladium-Silver (PdAg) alloys catalyst for Direct Liquid Fuel Cells. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2022]
|
11
|
Wang Y, Zhu YQ, Xie Z, Xu SM, Xu M, Li Z, Ma L, Ge R, Zhou H, Li Z, Kong X, Zheng L, Zhou J, Duan H. Efficient Electrocatalytic Oxidation of Glycerol via Promoted OH* Generation over Single-Atom-Bismuth-Doped Spinel Co 3O 4. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ye Wang
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Yu-Quan Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Zhiheng Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100091, China
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Zezhou Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100091, China
| | - Lina Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ruixiang Ge
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Hua Zhou
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100091, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing100084, China
| |
Collapse
|
12
|
Abstract
Utilization of biofuels generated from renewable sources has attracted broad attention due to their benefits such as reducing consumption of fossil fuels, sustainability, and consequently prevention of global warming. The production of biodiesel causes a huge amount of by-product, crude glycerol, to accumulate. Glycerol, because of its unique structure having three hydroxyl groups, can be converted to a variety of industrially valuable products. In recent decades, increasing studies have been carried out on different catalytic pathways to selectively produce a wide range of glycerol derivatives. In the current review, the main routes including carboxylation, oxidation, etherification, hydrogenolysis, esterification, and dehydration to convert glycerol to value-added products are investigated. In order to achieve more glycerol conversion and higher desired product selectivity, acquisition of knowledge on the catalysts, the type of acidic or basic, the supports, and studying various reaction pathways and operating parameters are necessary. This review attempts to summarize the knowledge of catalytic reactions and mechanisms leading to value-added derivatives of glycerol. Additionally, the application of main products from glycerol are discussed. In addition, an overview on the market of glycerol, its properties, applications, and prospects is presented.
Collapse
|
13
|
Zhao M, Yan H, Lu R, Liu Y, Zhou X, Chen X, Feng X, Duan H, Yang C. Insight into the Selective Oxidation Mechanism of Glycerol to 1,3‐Dihydroxyacetone over AuCu‐ZnO Interface. AIChE J 2022. [DOI: 10.1002/aic.17833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingyue Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | - Hao Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | - Ruilong Lu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | - Yibin Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | - Xin Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | - Xiaobo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| | | | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Qingdao China
| |
Collapse
|
14
|
Electrochemical Study of Semiconductor Properties for Bismuth Silicate-Based Photocatalysts Obtained via Hydro-/Solvothermal Approach. MATERIALS 2022; 15:ma15124099. [PMID: 35744158 PMCID: PMC9229303 DOI: 10.3390/ma15124099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
Three bismuth silicate-based photocatalysts (composites of Bi2SiO5 and Bi12SiO20) prepared via the hydro-/solvothermal approach were studied using electrochemical methods. The characteristic parameters of semiconductors, such as flat band potential, donor density, and mobility of their charge carriers, were obtained and compared with the materials’ photocatalytic activity. An attempt was made to study the effect of solution components on the semiconductor/liquid interface (SLI). In particular, the Mott–Schottky characterization was made in a common model electrolyte (Na2SO4) and with the addition of glycerol as a model organic compound for photocatalysis. Thus, a medium close to those in photocatalytic experiments was simulated, at least within the limits allowed by electrochemical measurements. Zeta-potential measurements and electrochemical impedance spectroscopy were used to reveal the processes taking place at the SLI. It was found that the medium in which measurements were carried out dramatically impacted the results. The flat band potential values (Efb) obtained via the Mott–Schottky technique were shown to differ significantly depending on the solution used in the experiment, which is explained by different processes taking place at the SLI. A strong influence of specific adsorption of commonly used sulfate ions and neutral molecules on the measured values of Efb was shown.
Collapse
|
15
|
Selective oxidation of glycerol over different shaped WO3 supported Pt NPs. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.111545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Gao M, Yang P, Zhang X, Zhang Y, Li D, Feng J. Semi-quantitative design of synergetic surficial/interfacial sites for the semi-continuous oxidation of glycerol. FUNDAMENTAL RESEARCH 2022; 2:412-421. [PMID: 38933400 PMCID: PMC11197512 DOI: 10.1016/j.fmre.2021.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
Qualitatively identifying the dominant catalytic site for each step of a semi-continuous reaction and semi-quantitatively correlating such different sites to the catalytic performance is of great significance toward the integration of multiple well-optimized sites on a heterogeneous catalyst. Herein, a series of structurally defined TiOx-based catalysts were synthesized to provide a feasible approach to investigate the aforementioned issues using the semi-continuous oxidation of glycerol as a model reaction. Detailed investigations have verified the simultaneous presence of two kinds of Pt active sites: 1) Negatively charged Pt bound to the oxygen vacancies of modified TiOx in the form of Ptδ--Ov-Ti3+ sites and 2) metallic Pt (Pt0 site) located away from the interface. Meanwhile, the proportion of surficial and interfacial sites varies over this series of catalysts. Combined in situ FTIR experiments revealed that the reaction network was well-tuned via a site cooperation mechanism: The surficial Pt0 sites dissociatively adsorb the OH group of glycerol with a monodentate bonding geometry and the Ptδ--Ov-Ti3+ sites dissociate the C=O bond of the aldehyde group in a bidentate form. Furthermore, CO-FTIR spectroscopy confirmed a correlation between the reaction rate/product selectivity and the fraction of surficial/interfacial sites. A rational proportion of surficial and interfacial sites is key to enabling a high yield of glyceric acid. The most active catalyst with 32% surface sites and 68% interfacial sites exhibited 90.0% glycerol conversion and 68.5% GLYA selectivity. These findings provide a deeper understanding of the structure-activity relationships using qualitative identification and semi-quantitative analysis.
Collapse
Affiliation(s)
- Mingyu Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengfei Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yani Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
17
|
Production of Hydroxypyruvic Acid by Glycerol Oxidation over Pt/CeO2-ZrO2-Bi2O3-PbO/SBA-16 Catalysts. Catalysts 2022. [DOI: 10.3390/catal12010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pt/CeO2-ZrO2-Bi2O3-PbO/SBA-16 (SBA-16: Santa Barbara Amorphous No. 16) catalysts were synthesized to produce hydroxypyruvic acid by glycerol oxidation. In the catalysts, the introduction of PbO into CeO2-ZrO2-Bi2O3 improved the oxygen release and storage abilities owing to the synergistic redox reaction of Pb2+/4+ and Ce3+/4+, which facilitated the oxidation ability of Pt. In addition, the oxidation of the secondary OH group in glycerol might be accelerated by the geometric effects of glycerol, Pt, and Bi3+ or Pb2+/4+. Furthermore, the moderate reaction conditions such as room temperature and open-air atmosphere enabled the suppression of further oxidation of hydroxypyruvic acid. The highest catalytic activity was obtained for 7 wt% Pt/16 wt% Ce0.60Zr0.15Bi0.20Pb0.05O2−δ/SBA-16, which provided a hydroxypyruvic acid yield maximum of 24.6%, after the reaction for 6 h at 30 °C in atmospheric air.
Collapse
|
18
|
M. Walgode P, D. Coelho LC, V. Faria RP, E. Rodrigues A. Dihydroxyacetone Production: From Glycerol Catalytic Oxidation with Commercial Catalysts to Chromatographic Separation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pedro M. Walgode
- Laboratory of Separation and Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering of University of Porto, 4200-465 Porto, Portugal
| | - Lucas C. D. Coelho
- Laboratory of Separation and Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering of University of Porto, 4200-465 Porto, Portugal
| | - Rui P. V. Faria
- Laboratory of Separation and Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering of University of Porto, 4200-465 Porto, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering of University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
19
|
Chen W, Wang J, Zhang Y, Zhang J, Duan X, Si R, Chen D, Qian G, Zhou X. Kinetics decoupling activity and selectivity of Pt nanocatalyst for enhanced glycerol oxidation performance. AIChE J 2021. [DOI: 10.1002/aic.17339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Jingnan Wang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yanfang Zhang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai China
| | - De Chen
- Department of Chemical Engineering Norwegian University of Science and Technology Trondheim Norway
| | - Gang Qian
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
20
|
Nan B, Fu Q, Yu J, Shu M, Zhou LL, Li J, Wang WW, Jia CJ, Ma C, Chen JX, Li L, Si R. Unique structure of active platinum-bismuth site for oxidation of carbon monoxide. Nat Commun 2021; 12:3342. [PMID: 34099668 PMCID: PMC8184822 DOI: 10.1038/s41467-021-23696-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
As the technology development, the future advanced combustion engines must be designed to perform at a low temperature. Thus, it is a great challenge to synthesize high active and stable catalysts to resolve exhaust below 100 °C. Here, we report that bismuth as a dopant is added to form platinum-bismuth cluster on silica for CO oxidation. The highly reducible oxygen species provided by surface metal-oxide (M-O) interface could be activated by CO at low temperature (~50 °C) with a high CO2 production rate of 487 μmolCO2·gPt-1·s-1 at 110 °C. Experiment data combined with density functional calculation (DFT) results demonstrate that Pt cluster with surface Pt-O-Bi structure is the active site for CO oxidation via providing moderate CO adsorption and activating CO molecules with electron transformation between platinum atom and carbon monoxide. These findings provide a unique and general approach towards design of potential excellent performance catalysts for redox reaction.
Collapse
Affiliation(s)
- Bing Nan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Science, Beijing, China
| | - Qiang Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jing Yu
- Shanghai Institute of Measurement and Testing Technology, Shanghai, China
| | - Miao Shu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Lu-Lu Zhou
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jinying Li
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.
| | - Chao Ma
- Center for High Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, China.
| | - Jun-Xiang Chen
- Division of China, TILON Group Technology Limited, Shanghai, China
| | - Lina Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Shanghai, China
| | - Rui Si
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Shanghai, China.
| |
Collapse
|
21
|
Li T, Harrington DA. An Overview of Glycerol Electrooxidation Mechanisms on Pt, Pd and Au. CHEMSUSCHEM 2021; 14:1472-1495. [PMID: 33427408 DOI: 10.1002/cssc.202002669] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
In the most recent decade, glycerol electrooxidation (GEOR) has attracted extensive research interest for valorization of glycerol: the conversion of glycerol to value-added products. These reactions at platinum, palladium, and gold electrodes have a lot of uncertainty in their reaction mechanisms, which has generated some controversies. This review gathers many reported experimental results, observations and proposed reaction mechanisms in order to draw a full picture of GEOR. A particular focus is the clarification of two propositions: Pd is inferior to Pt in cleaving the C-C bonds of glycerol during the electrooxidation and the massive production of CO2 at high overpotentials is due to the oxidation of the already-oxidized carboxylate products. It is concluded that the inferior C-C bond cleavability with Pd electrodes, as compared with Pt electrodes, is due to the inefficiency of deprotonation, and the massive generation of CO2 as well as other C1/C2 side products is partially caused by the consumption of OH- at the anodes, as a lower pH reduces the amount of carboxylates and favors the C-C bond scission. A reaction mechanism is proposed in this review, in which the generation of side products are directly from glycerol ("competition" between each side product) rather than from the further oxidation of C2/C3 products. Additionally, GEOR results and associated interpretations for Ni electrodes are presented, as well as a brief review on the performances of multi-metallic electrocatalysts (most of which are nanocatalysts) as an introduction to these future research hotpots.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Chemistry, University of Victoria, Victoria, BC, Canada, V8W 3V6
| | - David A Harrington
- Department of Chemistry, University of Victoria, Victoria, BC, Canada, V8W 3V6
| |
Collapse
|
22
|
Li Y, Dang Z, Gao P. High‐efficiency electrolysis of biomass and its derivatives: Advances in anodic oxidation reaction mechanism and transition metal‐based electrocatalysts. NANO SELECT 2021. [DOI: 10.1002/nano.202000227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ying Li
- School of Materials Sun Yat‐sen University Guangzhou China
| | - Zhiya Dang
- School of Materials Sun Yat‐sen University Guangzhou China
| | - Pingqi Gao
- School of Materials Sun Yat‐sen University Guangzhou China
| |
Collapse
|
23
|
Yue C, Li C, Zhang P, Fan M, Haryono A, Leng Y, Dong Y, Jiang P. Efficiently selective oxidation of glycerol by Bi QDs/BiOBr–O v: promotion of molecular oxygen activation by Bi quantum dots and oxygen vacancies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01927a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BiQDs and Ov can promote the activation of O2 to make BiQDs/BiOBr–Ov catalyze the selective oxidation of glycerol efficiently.
Collapse
Affiliation(s)
- Chengguang Yue
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Chenhao Li
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Pingbo Zhang
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Mingming Fan
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Agus Haryono
- Research Center for Chemistry
- Indonesian Institute of Sciences (LIPI)
- Kawasan Puspiptek
- Serpong 15314
- Indonesia
| | - Yan Leng
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yuming Dong
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Pingping Jiang
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
24
|
Selective oxidation of glycerol to dihydroxyacetone over N-doped porous carbon stabilized CuxO supported Au catalysts. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
An Z, Ma H, Han H, Huang Z, Jiang Y, Wang W, Zhu Y, Song H, Shu X, Xiang X, He J. Insights into the Multiple Synergies of Supports in the Selective Oxidation of Glycerol to Dihydroxyacetone: Layered Double Hydroxide Supported Au. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02844] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhe An
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Honghao Ma
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hongbo Han
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zeyu Huang
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yitao Jiang
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenlong Wang
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yanru Zhu
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hongyan Song
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Shu
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing He
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|