1
|
Lo J, Kung CC, Cheng TJR, Wong CH, Ma C. Structure-Based Mechanism and Specificity of Human Galactosyltransferase β3GalT5. J Am Chem Soc 2025; 147:10875-10885. [PMID: 40130308 PMCID: PMC11969544 DOI: 10.1021/jacs.4c11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/26/2025]
Abstract
Human β1,3-galactosyltransferase 5 (β3GalT5) is a key enzyme involved in the synthesis of glycans on glycoproteins and glycolipids that are associated with various important biological functions, especially tumor malignancy and cancer progression, and has been considered as a promising target for development of anticancer agents. In this study, we determined the X-ray structures of β3GalT5 in complex with the stable donor analogue UDP-2-fluorogalactose or the native donor substrate UDP-galactose (UDP-Gal) and several glycan acceptors at different reaction steps. Based on the structures obtained from our experiments, β3GalT5 catalyzes the transfer of galactose from UDP-Gal to a broad spectrum of glycan acceptors with an SN2-like mechanism; however, in the absence of a glycan acceptor, UDP-Gal is slowly converted to UDP and two other products, one is galactose through an SN2-like mechanism with water as an acceptor and the other is an oxocarbenium-like product, presumably through an SN1-like mechanisms. The structure, mechanism, and specificity of β3GalT5 presented in this study advance our understanding of enzymatic glycosylation and provide valuable insights for application to glycan synthesis and drug design targeting β3GalT5-associated cancer.
Collapse
Affiliation(s)
- Jennifer
M. Lo
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chih-Chuan Kung
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Che Ma
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
2
|
Mycroft-West CJ, Leanca MA, Wu L. Structural glycobiology - from enzymes to organelles. Biochem Soc Trans 2025; 53:BST20241119. [PMID: 39889286 DOI: 10.1042/bst20241119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025]
Abstract
Biological carbohydrate polymers represent some of the most complex molecules in life, enabling their participation in a huge range of physiological functions. The complexity of biological carbohydrates arises from an extensive enzymatic repertoire involved in their construction, deconstruction and modification. Over the past decades, structural studies of carbohydrate processing enzymes have driven major insights into their mechanisms, supporting associated applications across medicine and biotechnology. Despite these successes, our understanding of how multienzyme networks function to create complex polysaccharides is still limited. Emerging techniques such as super-resolution microscopy and cryo-electron tomography are now enabling the investigation of native biological systems at near molecular resolutions. Here, we review insights from classical in vitro studies of carbohydrate processing, alongside recent in situ studies of glycosylation-related processes. While considerable technical challenges remain, the integration of molecular mechanisms with true biological context promises to transform our understanding of carbohydrate regulation, shining light upon the processes driving functional complexity in these essential biomolecules.
Collapse
Affiliation(s)
| | - Miron A Leanca
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
| | - Liang Wu
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, OX3 7BN, Oxford, UK
| |
Collapse
|
3
|
Osuka RF, Yamasaki T, Kizuka Y. Structure and function of N-acetylglucosaminyltransferase V (GnT-V). Biochim Biophys Acta Gen Subj 2024; 1868:130709. [PMID: 39233219 DOI: 10.1016/j.bbagen.2024.130709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The β1,6-GlcNAc branch in N-glycans, produced by a glycosyltransferase N-acetylglucosaminyltransferase V (GnT-V or MGAT5), is associated with cancer and autoimmune diseases. SCOPE Here, we summarize the structure and activity regulation of GnT-V. We also describe the roles of the β1,6-GlcNAc branch on glycoproteins in cells and the phenotypes of Mgat5-deficient mice, focusing on cancer and the immune system. MAJOR CONCLUSIONS GnT-V has a unique structure for substrate recognition, and its activity and function are regulated by shedding. The glycans produced by GnT-V play pivotal roles in the differentiation of neural cells, cancer malignancy and immunotherapy, and the development of autoimmune diseases by regulating the functions and cell surface residency of glycoproteins. GENERAL SIGNIFICANCE Controlling the expression or activity of GnT-V could be a therapeutic option against cancer and autoimmune diseases. Future work should clarify how GnT-V selectively modifies the specific glycoproteins or N-glycosylation sites in vivo.
Collapse
Affiliation(s)
- Reina F Osuka
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan
| | - Takahiro Yamasaki
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan
| | - Yasuhiko Kizuka
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan.
| |
Collapse
|
4
|
Liu Y, Bineva-Todd G, Meek RW, Mazo L, Piniello B, Moroz O, Burnap SA, Begum N, Ohara A, Roustan C, Tomita S, Kjaer S, Polizzi K, Struwe WB, Rovira C, Davies GJ, Schumann B. A Bioorthogonal Precision Tool for Human N-Acetylglucosaminyltransferase V. J Am Chem Soc 2024; 146:26707-26718. [PMID: 39287665 PMCID: PMC11450819 DOI: 10.1021/jacs.4c05955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Correct elaboration of N-linked glycans in the secretory pathway of human cells is essential in physiology. Early N-glycan biosynthesis follows an assembly line principle before undergoing crucial elaboration points that feature the sequential incorporation of the sugar N-acetylglucosamine (GlcNAc). The activity of GlcNAc transferase V (MGAT5) primes the biosynthesis of an N-glycan antenna that is heavily upregulated in cancer. Still, the functional relevance and substrate choice of MGAT5 are ill-defined. Here, we employ protein engineering to develop a bioorthogonal substrate analog for the activity of MGAT5. Chemoenzymatic synthesis is used to produce a collection of nucleotide-sugar analogs with bulky, bioorthogonal acylamide side chains. We find that WT-MGAT5 displays considerable activity toward such substrate analogues. Protein engineering yields an MGAT5 variant that loses activity against the native nucleotide sugar and increases activity toward a 4-azidobutyramide-containing substrate analogue. By such restriction of substrate specificity, we show that the orthogonal enzyme-substrate pair is suitable to bioorthogonally tag glycoproteins. Through X-ray crystallography and molecular dynamics simulations, we establish the structural basis of MGAT5 engineering, informing the design rules for bioorthogonal precision chemical tools.
Collapse
Affiliation(s)
- Yu Liu
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| | - Ganka Bineva-Todd
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| | - Richard W. Meek
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
- School
of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Laura Mazo
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Beatriz Piniello
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Olga Moroz
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Sean A. Burnap
- Department
of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin
Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Nadima Begum
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - André Ohara
- Department
of Chemical Engineering and Imperial College Centre for Synthetic
Biology, Imperial College London, London SW7 2AZ, U.K.
| | - Chloe Roustan
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Sara Tomita
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Svend Kjaer
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Karen Polizzi
- Department
of Chemical Engineering and Imperial College Centre for Synthetic
Biology, Imperial College London, London SW7 2AZ, U.K.
| | - Weston B. Struwe
- Department
of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin
Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08020 Barcelona, Spain
| | - Gideon J. Davies
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Benjamin Schumann
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| |
Collapse
|
5
|
Xiao K, Wang D, Liu X, Kang Y, Luo R, Hu L, Peng Z. Novel Bioproduction of 1,6-Hexamethylenediamine from l-Lysine Based on an Artificial One-Carbon Elongation Cycle. ACS OMEGA 2024; 9:40970-40979. [PMID: 39372007 PMCID: PMC11447709 DOI: 10.1021/acsomega.4c06289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
1,6-hexamethylenediamine (HMD) is an important precursor for nylon-66 material synthesis, while research on the bioproduction of HMD has been relatively scarce in scientific literature. As concerns about climate change, environmental pollution, and the depletion of fossil fuel reserves continue to grow, the significance of producing fundamental chemicals from renewable sources is becoming increasingly prominent. In recent investigations, the bioproduction of HMD from adipic acid has been reported but with lingering challenges concerning costly raw materials and low yields. Here, we have undertaken the reconstruction of the HMD synthetic pathway within Escherichia coli, which was constituted with l-lysine α-oxidase (Raip), LeuABCD, α-ketoacid decarboxylase (KivD), and transaminases (Vfl), leveraging a carbon chain extension module and a metabolic pathway of transaminase-decarboxylase cascade catalysis within the strain WD20, which successfully produce 46.7 ± 2.0 mg/L HMD. To increase the cascade activity and create a higher tolerance to external environmental disturbance for l-lysine to convert into HMD, another two enzymes d-alanine aminotransferase (Dat) and alpha-ketoacid decarboxylase (KdcA) were introduced into WD21 to provide flux flexibility for α-ketoacid metabolization, which was named "Smart-net metabolic engineering" in our research, and high-efficiency synthesis of HMD utilizing l-lysine as the substrate has been successfully achieved. Finally, we established a + 1C bioconversion multienzyme cascade catalyzing up to 65% conversion of l-lysine to HMD. Notably, our fermentation process yielded an impressive 213.5 ± 8.7 mg/L, representing the highest reported yield to date for the bioproduction of HMD from l-lysine.
Collapse
Affiliation(s)
- Kaixing Xiao
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Dan Wang
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xuemei Liu
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Yaqi Kang
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Ruoshi Luo
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Lin Hu
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Zhiyao Peng
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
6
|
Bonab MKF, Guo Z, Li Q. Glycosphingolipids: from metabolism to chemoenzymatic total synthesis. Org Biomol Chem 2024; 22:6665-6683. [PMID: 39120686 PMCID: PMC11341264 DOI: 10.1039/d4ob00695j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
GSLs are the major glycolipids in vertebrates and mediate many key biological processes from intercellular recognition to cis regulation of signal transduction. The fast-expanding field of glycobiology has led to a growing demand for diverse and structurally defined GSLs, and enzymatic GSL synthesis is developing rapidly in accordance. This article provides an overview of natural GSL biosynthetic pathways and surveys the bacterial enzymes applied to GSL synthesis and recent progress in synthesis strategies. By correlating these three areas, this article aims to define the gaps between GSL biosynthesis and chemoenzymatic synthesis and evaluate the opportunities for harnessing natural forces to access GSLs efficiently.
Collapse
Affiliation(s)
- Mitra K F Bonab
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Qingjiang Li
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.
| |
Collapse
|
7
|
Kizuka Y. Regulation of intracellular activity of N-glycan branching enzymes in mammals. J Biol Chem 2024; 300:107471. [PMID: 38879010 PMCID: PMC11328876 DOI: 10.1016/j.jbc.2024.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024] Open
Abstract
Most proteins in the secretory pathway are glycosylated, and N-glycans are estimated to be attached to over 7000 proteins in humans. As structural variation of N-glycans critically regulates the functions of a particular glycoprotein, it is pivotal to understand how structural diversity of N-glycans is generated in cells. One of the major factors conferring structural variation of N-glycans is the variable number of N-acetylglucosamine branches. These branch structures are biosynthesized by dedicated glycosyltransferases, including GnT-III (MGAT3), GnT-IVa (MGAT4A), GnT-IVb (MGAT4B), GnT-V (MGAT5), and GnT-IX (GnT-Vb, MGAT5B). In addition, the presence or absence of core modification of N-glycans, namely, core fucose (included as an N-glycan branch in this manuscript), synthesized by FUT8, also confers large structural variation on N-glycans, thereby crucially regulating many protein-protein interactions. Numerous biochemical and medical studies have revealed that these branch structures are involved in a wide range of physiological and pathological processes. However, the mechanisms regulating the activity of the biosynthetic glycosyltransferases are yet to be fully elucidated. In this review, we summarize the previous findings and recent updates regarding regulation of the activity of these N-glycan branching enzymes. We hope that such information will help readers to develop a comprehensive overview of the complex system regulating mammalian N-glycan maturation.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
8
|
Osuka RF, Nagae M, Ohuchi A, Ohno S, Yamaguchi Y, Kizuka Y. The cancer-associated glycosyltransferase GnT-V (MGAT5) recognizes the N-glycan core via residues outside its catalytic pocket. FEBS Lett 2023; 597:3102-3113. [PMID: 37974463 DOI: 10.1002/1873-3468.14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
N-acetylglucosaminyltransferase-V (GnT-V or MGAT5) is a glycosyltransferase involved in cancer metastasis that creates the β1,6-branch on N-glycans of target proteins such as cell adhesion molecules and cell surface receptors. The 3D structure of GnT-V and its catalytic site, which are critical for the interaction with the N-glycan terminal, have already been revealed. However, it remains unclear how GnT-V recognizes the core part of N-glycan or the polypeptide part of the acceptor. Using molecular dynamics simulations and biochemical experiments, we found that several residues outside the catalytic pocket are likely involved in the recognition of the core part of N-glycan. Furthermore, our simulation suggested that UDP binding affects the orientation of the acceptor due to the conformational change at the Manα1,6-Man linkage. These findings provide new insights into how GnT-V recognizes its glycoprotein substrates.
Collapse
Affiliation(s)
- Reina F Osuka
- The United Graduate School of Agricultural Science, Gifu University, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Akito Ohuchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yasuhiko Kizuka
- The United Graduate School of Agricultural Science, Gifu University, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Japan
| |
Collapse
|
9
|
Piniello B, Macías-León J, Miyazaki S, García-García A, Compañón I, Ghirardello M, Taleb V, Veloz B, Corzana F, Miyagawa A, Rovira C, Hurtado-Guerrero R. Molecular basis for bacterial N-glycosylation by a soluble HMW1C-like N-glycosyltransferase. Nat Commun 2023; 14:5785. [PMID: 37723184 PMCID: PMC10507012 DOI: 10.1038/s41467-023-41238-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023] Open
Abstract
Soluble HMW1C-like N-glycosyltransferases (NGTs) catalyze the glycosylation of Asn residues in proteins, a process fundamental for bacterial autoaggregation, adhesion and pathogenicity. However, our understanding of their molecular mechanisms is hindered by the lack of structures of enzymatic complexes. Here, we report structures of binary and ternary NGT complexes of Aggregatibacter aphrophilus NGT (AaNGT), revealing an essential dyad of basic/acidic residues located in the N-terminal all α-domain (AAD) that intimately recognizes the Thr residue within the conserved motif Asn0-X+1-Ser/Thr+2. Poor substrates and inhibitors such as UDP-galactose and UDP-glucose mimetics adopt non-productive conformations, decreasing or impeding catalysis. QM/MM simulations rationalize these results, showing that AaNGT follows a SN2 reaction mechanism in which the acceptor asparagine uses its imidic form for catalysis and the UDP-glucose phosphate group acts as a general base. These findings provide key insights into the mechanism of NGTs and will facilitate the design of structure-based inhibitors to treat diseases caused by non-typeable H. influenzae or other Gram-negative bacteria.
Collapse
Affiliation(s)
- Beatriz Piniello
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Javier Macías-León
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Shun Miyazaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Ana García-García
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006, Logroño, Spain
| | - Mattia Ghirardello
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006, Logroño, Spain
| | - Víctor Taleb
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Billy Veloz
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006, Logroño, Spain
| | - Atsushi Miyagawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain.
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
- Fundación ARAID, 50018, Zaragoza, Spain.
| |
Collapse
|
10
|
In silico modelling of the function of disease-related CAZymes. Essays Biochem 2023; 67:355-372. [PMID: 36912236 PMCID: PMC10154626 DOI: 10.1042/ebc20220218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/14/2023]
Abstract
In silico modelling of proteins comprises a diversity of computational tools aimed to obtain structural, electronic, and/or dynamic information about these biomolecules, capturing mechanistic details that are challenging to experimental approaches, such as elusive enzyme-substrate complexes, short-lived intermediates, and reaction transition states (TS). The present article gives the reader insight on the use of in silico modelling techniques to understand complex catalytic reaction mechanisms of carbohydrate-active enzymes (CAZymes), along with the underlying theory and concepts that are important in this field. We start by introducing the significance of carbohydrates in nature and the enzymes that process them, CAZymes, highlighting the conformational flexibility of their carbohydrate substrates. Three commonly used in silico methods (classical molecular dynamics (MD), hybrid quantum mechanics/molecular mechanics (QM/MM), and enhanced sampling techniques) are described for nonexpert readers. Finally, we provide three examples of the application of these methods to unravel the catalytic mechanisms of three disease-related CAZymes: β-galactocerebrosidase (GALC), responsible for Krabbe disease; α-mannoside β-1,6-N-acetylglucosaminyltransferase V (MGAT5), involved in cancer; and O-fucosyltransferase 1 (POFUT1), involved in several human diseases such as leukemia and the Dowling-Degos disease.
Collapse
|
11
|
Shedding of N-acetylglucosaminyltransferase-V is regulated by maturity of cellular N-glycan. Commun Biol 2022; 5:743. [PMID: 35915223 PMCID: PMC9343384 DOI: 10.1038/s42003-022-03697-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
The number of N-glycan branches on glycoproteins is closely related to the development and aggravation of various diseases. Dysregulated formation of the branch produced by N-acetylglucosaminyltransferase-V (GnT-V, also called as MGAT5) promotes cancer growth and malignancy. However, it is largely unknown how the activity of GnT-V in cells is regulated. Here, we discover that the activity of GnT-V in cells is selectively upregulated by changing cellular N-glycans from mature to immature forms. Our glycomic analysis further shows that loss of terminal modifications of N-glycans resulted in an increase in the amount of the GnT-V-produced branch. Mechanistically, shedding (cleavage and extracellular secretion) of GnT-V mediated by signal peptide peptidase-like 3 (SPPL3) protease is greatly inhibited by blocking maturation of cellular N-glycans, resulting in an increased level of GnT-V protein in cells. Alteration of cellular N-glycans hardly impairs expression or localization of SPPL3; instead, SPPL3-mediated shedding of GnT-V is shown to be regulated by N-glycans on GnT-V, suggesting that the level of GnT-V cleavage is regulated by its own N-glycan structures. These findings shed light on a mechanism of secretion-based regulation of GnT-V activity. Cleavage of the glycan-branching enzyme N-acetylglucosaminyltransferase-V (GnT-V) by signal peptide peptidase-like 3 (SPPL3) protease and extracellular secretion of active glycan GnT-V depend on GnT-V’s own glycosylation state.
Collapse
|
12
|
Oka N, Mori S, Ikegaya M, Park EY, Miyazaki T. Crystal structure and sugar-binding ability of the C-terminal domain of N-acetylglucosaminyltransferase IV establish a new carbohydrate-binding module family. Glycobiology 2022; 32:1153-1163. [PMID: 36106687 DOI: 10.1093/glycob/cwac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023] Open
Abstract
N-glycans are modified by glycosyltransferases in the endoplasmic reticulum and Golgi apparatus. N-acetylglucosaminyltransferase IV (GnT-IV) is a Golgi-localized glycosyltransferase that synthesizes complex-type N-glycans in vertebrates. This enzyme attaches N-acetylglucosamine (GlcNAc) to the α-1,3-linked mannose branch of the N-glycan core structure via a β-1,4 linkage. Deficiency of this enzyme is known to cause abnormal cellular functions, making it a vital enzyme for living organisms. However, there has been no report on its 3-dimensional structure to date. Here, we demonstrated that the C-terminal regions (named CBML) of human GnT-IVa and Bombyx mori ortholog have the ability to bind β-N-acetylglucosamine. In addition, we determined the crystal structures of human CBML, B. mori CBML, and its complex with β-GlcNAc at 1.97, 1.47, and 1.15 Å resolutions, respectively, and showed that they adopt a β-sandwich fold, similar to carbohydrate-binding module family 32 (CBM32) proteins. The regions homologous to CBML (≥24% identity) were found in GnT-IV isozymes, GnT-IVb, and GnT-IVc (known as GnT-VI), and the structure of B. mori CBML in complex with β-GlcNAc indicated that the GlcNAc-binding residues were highly conserved among these isozymes. These residues are also conserved with the GlcNAc-binding CBM32 domain of β-N-acetylhexosaminidase NagH from Clostridium perfringens despite the low sequence identity (<20%). Taken together with the phylogenetic analysis, these findings indicate that these CBMLs may be novel CBM family proteins with GlcNAc-binding ability.
Collapse
Affiliation(s)
- Nozomi Oka
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Sota Mori
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Marina Ikegaya
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Enoch Y Park
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takatsugu Miyazaki
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
13
|
Vibhute AM, Tanaka HN, Mishra SK, Osuka RF, Nagae M, Yonekawa C, Korekane H, Doerksen RJ, Ando H, Kizuka Y. Structure-based design of UDP-GlcNAc analogs as candidate GnT-V inhibitors. Biochim Biophys Acta Gen Subj 2022; 1866:130118. [PMID: 35248671 PMCID: PMC9947920 DOI: 10.1016/j.bbagen.2022.130118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND N-Glycan branching regulates various functions of glycoproteins. N-Acetylglucosaminyltransferase V (GnT-V) is a GlcNAc transferase that acts on N-glycans and the GnT-V-producing branch is highly related to cancer progression. This indicates that specific GnT-V inhibitors may be drug candidates for cancer treatment. To design novel GnT-V inhibitors, we focused on the unique and weak recognition of the donor substrate UDP-GlcNAc by GnT-V. On the basis of the catalytic pocket structure, we hypothesized that UDP-GlcNAc analogs with increasing hydrophobicity may be GnT-V inhibitors. METHODS We chemically synthesized 10 UDP-GlcNAc analogs in which one or two phosphate groups were replaced with hydrophobic groups. To test these compounds, we set up an HPLC-based enzyme assay system for all N-glycan-branching GlcNAc transferases in which GnT-I-V activity was measured using purified truncated enzymes. Using this system, we assessed the inhibitory effects of the synthesized compounds on GnT-V and their specificity. RESULTS Several UDP-GlcNAc analogs inhibited GnT-V activity, although the inhibition potency was modest. Compared with other GnTs, these compounds showed a preference for GnT-V, which suggested that GnT-V was relatively tolerant of hydrophobicity in the donor substrate. Docking models of the inhibitory compounds with GnT-V suggested the mechanisms of how these compounds interacted with GnT-V and inhibited its action. CONCLUSIONS Chemical modification of the donor substrate may be a promising strategy to develop selective inhibitors of GnT-V. GENERAL SIGNIFICANCE Our findings provide new insights into the design of GnT inhibitors and how GnTs recognize the donor substrate.
Collapse
Affiliation(s)
- Amol M Vibhute
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hide-Nori Tanaka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| | - Sushil K Mishra
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, MS 38677, USA
| | - Reina F Osuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Chizuko Yonekawa
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hiroaki Korekane
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako 351-0198, Japan
| | - Robert J Doerksen
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, MS 38677, USA
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
14
|
Hirata T, Takekiyo T, Yoshimura Y, Tokoro Y, Ishizaki T, Kizuka Y, Kuroda K. Cryostorage of unstable N-acetylglucosaminyltransferase-V by synthetic zwitterions. RSC Adv 2022; 12:11628-11631. [PMID: 35481097 PMCID: PMC9016413 DOI: 10.1039/d2ra01575g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
We report biocompatible materials for cryostorage of unstable proteins such as cancer-related enzyme, N-acetylglucosaminyltransferase-V (GnT-V). GnT-V activity and the amount of protein after freezing were better retained in synthetic zwitterion solutions than in the glycerol solution. This study highlights the potential utility of synthetic zwitterions as novel cryoprotectants.
Collapse
Affiliation(s)
- Tetsuya Hirata
- Institute for Glyco-core Research (iGCORE), Gifu University Gifu Gifu 501-1193 Japan
| | - Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy Yokosuka Kanagawa 239-8686 Japan
| | - Yukihiro Yoshimura
- Department of Applied Chemistry, National Defense Academy Yokosuka Kanagawa 239-8686 Japan
| | - Yuko Tokoro
- Institute for Glyco-core Research (iGCORE), Gifu University Gifu Gifu 501-1193 Japan
| | - Takeru Ishizaki
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University Gifu Gifu 501-1193 Japan
| | - Kosuke Kuroda
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- NanoMaterials Research Institute, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
15
|
N-acetylglucosaminyltransferase-V requires a specific noncatalytic luminal domain for its activity toward glycoprotein substrates. J Biol Chem 2022; 298:101666. [PMID: 35104505 PMCID: PMC8889256 DOI: 10.1016/j.jbc.2022.101666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/11/2023] Open
Abstract
N-acetylglucosaminyltransferase-V (GnT-V or MGAT5) catalyzes the formation of an N-glycan β1,6-GlcNAc branch on selective target proteins in the Golgi apparatus and is involved in cancer malignancy and autoimmune disease etiology. Several three-dimensional structures of GnT-V were recently solved, and the recognition mechanism of the oligosaccharide substrate was clarified. However, it is still unclear how GnT-V selectively acts on glycoprotein substrates. In this study, we focused on an uncharacterized domain at the N-terminal side of the luminal region (N domain) of GnT-V, which was previously identified in a crystal structure, and aimed to reveal its role in GnT-V action. Using lectin blotting and fluorescence assisted cell sorting analysis, we found that a GnT-VΔN mutant lacking the N domain showed impaired biosynthetic activity in cells, indicating that the N domain is required for efficient glycosylation. To clarify this mechanism, we measured the in vitro activity of purified GnT-VΔN toward various kinds of substrates (oligosaccharide, glycohexapeptide, and glycoprotein) using HPLC and a UDP-Glo assay. Surprisingly, GnT-VΔN showed substantially reduced activity toward the glycoprotein substrates, whereas it almost fully maintained its activity toward the oligosaccharides and the glycopeptide substrates. Finally, docking models of GnT-V with substrate glycoproteins suggested that the N domain could interact with the substrate polypeptide directly. Our findings suggest that the N domain of GnT-V plays a critical role in the recognition of glycoprotein substrates, providing new insights into the mechanism of substrate-selective biosynthesis of N-glycans.
Collapse
|
16
|
Coines J, Cuxart I, Teze D, Rovira C. Computer Simulation to Rationalize “Rational” Engineering of Glycoside Hydrolases and Glycosyltransferases. J Phys Chem B 2022; 126:802-812. [PMID: 35073079 PMCID: PMC8819650 DOI: 10.1021/acs.jpcb.1c09536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Glycoside hydrolases
and glycosyltransferases are the main classes
of enzymes that synthesize and degrade carbohydrates, molecules essential
to life that are a challenge for classical chemistry. As such, considerable
efforts have been made to engineer these enzymes and make them pliable
to human needs, ranging from directed evolution to rational design,
including mechanism engineering. Such endeavors fall short and are
unreported in numerous cases, while even success is a necessary but
not sufficient proof that the chemical rationale behind the design
is correct. Here we review some of the recent work in CAZyme mechanism
engineering, showing that computational simulations are instrumental
to rationalize experimental data, providing mechanistic insight into
how native and engineered CAZymes catalyze chemical reactions. We
illustrate this with two recent studies in which (i) a glycoside hydrolase
is converted into a glycoside phosphorylase and (ii) substrate specificity
of a glycosyltransferase is engineered toward forming O-, N-, or S-glycosidic bonds.
Collapse
Affiliation(s)
- Joan Coines
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Irene Cuxart
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - David Teze
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
17
|
Wu H, Shajahan A, Yang JY, Capota E, Wands AM, Arthur CM, Stowell SR, Moremen KW, Azadi P, Kohler JJ. A photo-cross-linking GlcNAc analog enables covalent capture of N-linked glycoprotein-binding partners on the cell surface. Cell Chem Biol 2022; 29:84-97.e8. [PMID: 34331854 PMCID: PMC8792112 DOI: 10.1016/j.chembiol.2021.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
N-glycans are displayed on cell-surface proteins and can engage in direct binding interactions with membrane-bound and secreted glycan-binding proteins (GBPs). Biochemical identification and characterization of glycan-mediated interactions is often made difficult by low binding affinities. Here we describe the metabolic introduction of a diazirine photo-cross-linker onto N-acetylglucosamine (GlcNAc) residues of N-linked glycoproteins on cell surfaces. We characterize sites at which diazirine-modified GlcNAc is incorporated, as well as modest perturbations to glycan structure. We show that diazirine-modified GlcNAc can be used to covalently cross-link two extracellular GBPs, galectin-1 and cholera toxin subunit B, to cell-surface N-linked glycoproteins. The extent of cross-linking correlates with display of the preferred glycan ligands for the GBPs. In addition, covalently cross-linked complexes could be isolated, and protein components of cross-linked N-linked glycoproteins were identified by proteomics analysis. This method may be useful in the discovery and characterization of binding interactions that depend on N-glycans.
Collapse
Affiliation(s)
- Han Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA,current affiliation: Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia 30605
| | - Emanuela Capota
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Amberlyn M. Wands
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, Harvard Glycomics Center, Harvard Medical School, Boston, MA USA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, Harvard Glycomics Center, Harvard Medical School, Boston, MA USA
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA,Lead Contact:
| |
Collapse
|
18
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Šmak P, Tvaroška I, Koča J. The catalytic reaction mechanism of tyrosylprotein sulfotransferase-1. Phys Chem Chem Phys 2021; 23:23850-23860. [PMID: 34647946 DOI: 10.1039/d1cp03718h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tyrosine sulfation alters the biological activity of many proteins involved in different physiological and pathophysiological conditions, such as non-specific immune reaction, response to inflammation and ischemia, targeting of leukocytes and stem cells, or the formation of cancer metastases. Tyrosine sulfation is catalyzed by the enzymes tyrosylprotein sulfotransferases (TPST). In this study, we used QM/MM Car-Parrinello metadynamics simulations together with QM/MM potential energy calculations to investigate the catalytic mechanism of isoform TPST-1. The structural changes along the reaction coordinate are analyzed and discussed. Furthermore, both the methods supported the SN2 type of catalytic mechanism. The reaction barrier obtained from CPMD metadynamics was 12.8 kcal mol-1, and the potential energy scan led to reaction barriers of 11.6 kcal mol-1 and 13.7 kcal mol-1 with the B3LYP and OPBE functional, respectively. The comparison of the two methods (metadynamics and potential energy scan) may be helpful for future mechanistic studies. The insight into the reaction mechanism of TPST-1 might help with the rational design of transition-state TPST inhibitors.
Collapse
Affiliation(s)
- Pavel Šmak
- National Center for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Igor Tvaroška
- National Center for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Jaroslav Koča
- National Center for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
20
|
Balli OI, Uversky VN, Durdagi S, Coskuner-Weber O. Challenges and limitations in the studies of glycoproteins: A computational chemist's perspective. Proteins 2021; 90:322-339. [PMID: 34549826 DOI: 10.1002/prot.26242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022]
Abstract
Experimenters face challenges and limitations while analyzing glycoproteins due to their high flexibility, stereochemistry, anisotropic effects, and hydration phenomena. Computational studies complement experiments and have been used in characterization of the structural properties of glycoproteins. However, recent investigations revealed that computational studies face significant challenges as well. Here, we introduce and discuss some of these challenges and weaknesses in the investigations of glycoproteins. We also present requirements of future developments in computational biochemistry and computational biology areas that could be necessary for providing more accurate structural property analyses of glycoproteins using computational tools. Further theoretical strategies that need to be and can be developed are discussed herein.
Collapse
Affiliation(s)
- Oyku Irem Balli
- Molecular Biotechnology, Turkish-German University, Istanbul, Turkey
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | | |
Collapse
|
21
|
Piniello B, Lira-Navarrete E, Takeuchi H, Takeuchi M, Haltiwanger RS, Hurtado-Guerrero R, Rovira C. Asparagine Tautomerization in Glycosyltransferase Catalysis. The Molecular Mechanism of Protein O-Fucosyltransferase 1. ACS Catal 2021; 11:9926-9932. [PMID: 34868727 PMCID: PMC8631701 DOI: 10.1021/acscatal.1c01785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/19/2021] [Indexed: 12/12/2022]
Abstract
![]()
O-glycosylation is a post-translational protein
modification essential to life. One of the enzymes involved in this
process is protein O-fucosyltransferase 1 (POFUT1),
which fucosylates threonine or serine residues within a specific sequence
context of epidermal growth factor-like domains (EGF-LD). Unlike most
inverting glycosyltransferases, POFUT1 lacks a basic residue in the
active site that could act as a catalytic base to deprotonate the
Thr/Ser residue of the EGF-LD acceptor during the chemical reaction.
Using quantum mechanics/molecular mechanics (QM/MM) methods on recent
crystal structures, as well as mutagenesis experiments, we uncover
the enzyme catalytic mechanism, revealing that it involves proton
shuttling through an active site asparagine, conserved among species,
which undergoes tautomerization. This mechanism is consistent with
experimental kinetic analysis of Caenorhabditis elegans POFUT1 Asn43 mutants, which ablate enzyme activity even if mutated
to Asp, the canonical catalytic base in inverting glycosyltransferases.
These results will aid inhibitor development for Notch-associated O-glycosylation disorders.
Collapse
Affiliation(s)
- Beatriz Piniello
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Erandi Lira-Navarrete
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
| | - Hideyuki Takeuchi
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602, United States
| | - Megumi Takeuchi
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602, United States
| | - Robert S. Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602, United States
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 1017 Copenhagen, Denmark
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
22
|
Glycosylation: Rising Potential for Prostate Cancer Evaluation. Cancers (Basel) 2021; 13:cancers13153726. [PMID: 34359624 PMCID: PMC8345048 DOI: 10.3390/cancers13153726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Aberrant protein glycosylation is a well-known hallmark of cancer and is associated with differential expression of enzymes such as glycosyltransferases and glycosidases. The altered expression of the enzymes triggers cancer cells to produce glycoproteins with specific cancer-related aberrations in glycan structures. Increasing number of data indicate that glycosylation patterns of PSA and other prostate-originated proteins exert a potential to distinguish between benign prostate disease and cancer as well as among different stages of prostate cancer development and aggressiveness. This review summarizes the alterations in glycan sialylation, fucosylation, truncated O-glycans, and LacdiNAc groups outlining their potential applications in non-invasive diagnostic procedures of prostate diseases. Further research is desired to develop more general algorithms exploiting glycobiology data for the improvement of prostate diseases evaluation. Abstract Prostate cancer is the second most commonly diagnosed cancer among men. Alterations in protein glycosylation are confirmed to be a reliable hallmark of cancer. Prostate-specific antigen is the biomarker that is used most frequently for prostate cancer detection, although its lack of sensitivity and specificity results in many unnecessary biopsies. A wide range of glycosylation alterations in prostate cancer cells, including increased sialylation and fucosylation, can modify protein function and play a crucial role in many important biological processes in cancer, including cell signalling, adhesion, migration, and cellular metabolism. In this review, we summarize studies evaluating the prostate cancer associated glycosylation related alterations in sialylation, mainly α2,3-sialylation, core fucosylation, branched N-glycans, LacdiNAc group and presence of truncated O-glycans (sTn, sT antigen). Finally, we discuss the great potential to make use of glycans as diagnostic and prognostic biomarkers for prostate cancer.
Collapse
|
23
|
Franconetti A, Ardá A, Asensio JL, Blériot Y, Thibaudeau S, Jiménez-Barbero J. Glycosyl Oxocarbenium Ions: Structure, Conformation, Reactivity, and Interactions. Acc Chem Res 2021; 54:2552-2564. [PMID: 33930267 PMCID: PMC8173606 DOI: 10.1021/acs.accounts.1c00021] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Carbohydrates (glycans, saccharides, and sugars) are essential molecules in all domains of life. Research on glycoscience spans from chemistry to biomedicine, including material science and biotechnology. Access to pure and well-defined complex glycans using synthetic methods depends on the success of the employed glycosylation reaction. In most cases, the mechanism of the glycosylation reaction is believed to involve the oxocarbenium ion. Understanding the structure, conformation, reactivity, and interactions of this glycosyl cation is essential to predict the outcome of the reaction. In this Account, building on our contributions on this topic, we discuss the theoretical and experimental approaches that have been employed to decipher the key features of glycosyl cations, from their structures to their interactions and reactivity.We also highlight that, from a chemical perspective, the glycosylation reaction can be described as a continuum, from unimolecular SN1 with naked oxocarbenium cations as intermediates to bimolecular SN2-type mechanisms, which involve the key role of counterions and donors. All these factors should be considered and are discussed herein. The importance of dissociative mechanisms (involving contact ion pairs, solvent-separated ion pairs, solvent-equilibrated ion pairs) with bimolecular features in most reactions is also highlighted.The role of theoretical calculations to predict the conformation, dynamics, and reactivity of the oxocarbenium ion is also discussed, highlighting the advances in this field that now allow access to the conformational preferences of a variety of oxocarbenium ions and their reactivities under SN1-like conditions.Specifically, the ground-breaking use of superacids to generate these cations is emphasized, since it has permitted characterization of the structure and conformation of a variety of glycosyl oxocarbenium ions in superacid solution by NMR spectroscopy.We also pay special attention to the reactivity of these glycosyl ions, which depends on the conditions, including the counterions, the possible intra- or intermolecular participation of functional groups that may stabilize the cation and the chemical nature of the acceptor, either weak or strong nucleophile. We discuss recent investigations from different experimental perspectives, which identified the involved ionic intermediates, estimating their lifetimes and reactivities and studying their interactions with other molecules. In this context, we also emphasize the relationship between the chemical methods that can be employed to modulate the sensitivity of glycosyl cations and the way in which glycosyl modifying enzymes (glycosyl hydrolases and transferases) build and cleave glycosidic linkages in nature. This comparison provides inspiration on the use of molecules that regulate the stability and reactivity of glycosyl cations.
Collapse
Affiliation(s)
- Antonio Franconetti
- CIC
bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
| | - Ana Ardá
- CIC
bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
- lkerbasque,
Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
| | - Juan Luis Asensio
- Instituto
de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Yves Blériot
- Université
de Poitiers, IC2MP, UMR CNRS
7285, Equipe “OrgaSynth”, 4 rue Michel Brunet, 86073 cedex 9 Poitiers, France
| | - Sébastien Thibaudeau
- Université
de Poitiers, IC2MP, UMR CNRS
7285, Equipe “OrgaSynth”, 4 rue Michel Brunet, 86073 cedex 9 Poitiers, France
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
- lkerbasque,
Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
- Department
of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| |
Collapse
|
24
|
Mendoza F, Masgrau L. Computational modeling of carbohydrate processing enzymes reactions. Curr Opin Chem Biol 2021; 61:203-213. [PMID: 33812143 DOI: 10.1016/j.cbpa.2021.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022]
Abstract
Carbohydrate processing enzymes are of biocatalytic interest. Glycoside hydrolases and the recently discovered lytic polysaccharide monooxygenase for their use in biomass degradation to obtain biofuels or valued chemical entities. Glycosyltransferases or engineered glycosidases and phosphorylases for the synthesis of carbohydrates and glycosylated products. Quantum mechanics-molecular mechanics (QM/MM) methods are highly contributing to establish their different chemical reaction mechanisms. Other computational methods are also used to study enzyme conformational changes, ligand pathways, and processivity, e.g. for processive glycosidases like cellobiohydrolases. There is still a long road to travel to fully understand the role of conformational dynamics in enzyme activity and also to disclose the variety of reaction mechanisms these enzymes employ. Additionally, computational tools for enzyme engineering are beginning to be applied to evaluate substrate specificity or aid in the design of new biocatalysts with increased thermostability or tailored activity, a growing field where molecular modeling is finding its way.
Collapse
Affiliation(s)
- Fernanda Mendoza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Talcahuano, 4260000, Chile
| | - Laura Masgrau
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Institut de Biotecnología i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018, Barcelona, Spain.
| |
Collapse
|
25
|
Teze D, Coines J, Fredslund F, Dubey KD, Bidart GN, Adams PD, Dueber JE, Svensson B, Rovira C, Welner DH. O-/N-/S-Specificity in Glycosyltransferase Catalysis: From Mechanistic Understanding to Engineering. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- David Teze
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Joan Coines
- Departament de Química Inorgánica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Folmer Fredslund
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kshatresh D. Dubey
- Departament de Química Inorgánica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Gonzalo N. Bidart
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Paul D. Adams
- Department of Bioengineering, University of California, Berkeley, California 94704, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John E. Dueber
- Department of Bioengineering, University of California, Berkeley, California 94704, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Carme Rovira
- Departament de Química Inorgánica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08018, Spain
| | - Ditte H. Welner
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|