1
|
Sar S, Ghorai P. An Intramolecular Umpolung Cascade Kukhtin-Ramirez Reaction/Michael Addition-Initiated Cyclization: Stereoselective Synthesis of Tetrasubstituted Cyclopropane Fused 1-Indanones. Org Lett 2023; 25:1946-1951. [PMID: 36920108 DOI: 10.1021/acs.orglett.3c00494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Herein, we disclose a fascinating highly stereoselective P(NMe2)3 mediated intramolecular deoxygenative umpolung cascade Michael addition-initiated cyclopropanation with a diverse substrate adaptability. This methodology creates a new horizon for expedient access to valuable 6,5,3-fused scaffolds having an all-carbon quaternary stereocenter via Kukhtin-Ramirez (K-R) adduct formation, with excellent diastereoselectivity and yields under metal-free ambient conditions. A few functional group transformations have also been performed successfully. Additionally, an asymmetric catalytic attempt using (R)-(+)-H8-BINOL has delivered good enantioselectivity.
Collapse
Affiliation(s)
- Suman Sar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| |
Collapse
|
2
|
Wu Z, Krishnamurthy S, Satyanarayana Tummalapalli KS, Xu J, Yue C, Antilla JC. Enantioselective Amination of
β
‐Keto Esters Catalyzed by Chiral Calcium Phosphates. Chemistry 2022; 28:e202200907. [DOI: 10.1002/chem.202200907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Zhenwei Wu
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
| | - Suvratha Krishnamurthy
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
| | - K. S. Satyanarayana Tummalapalli
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
| | - Jun Xu
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
| | - Caizhen Yue
- School of Science Zhejiang Sci-Tech University Hangzhou City Zhejiang Province 310018 China
| | - Jon C. Antilla
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
- School of Science Zhejiang Sci-Tech University Hangzhou City Zhejiang Province 310018 China
| |
Collapse
|
3
|
Pu Q, Huo M, Liang G, Bai L, Chen G, Li H, Xiang P, Zhou H, Zhou J. Divergent oxidative dearomatization coupling reactions to construct polycyclic cyclohexadienones. Chem Commun (Camb) 2022; 58:4348-4351. [PMID: 35293906 DOI: 10.1039/d2cc00183g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly selective divergent oxidative dearomatization coupling reactions, in which the chemoselectivity is controlled by catalysts and bases, are reported herein. Three different kinds of polycyclic cyclohexadienones are produced from the same reactants (41 examples, 85-99% yield). Our method marks a novel copper- and palladium-catalyzed C-H oxidative dearomatization of phenolic derivatives.
Collapse
Affiliation(s)
- Qian Pu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Mingming Huo
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Guojuan Liang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Genhui Chen
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hongjiao Li
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xiang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Rénio M, Murtinho D, Ventura MR. New bifunctional 1,3-diamine organocatalysts derived from (+)-camphoric acid for asymmetric Michael addition of 1,3-dicarbonyl compounds to nitroolefins. Chirality 2022; 34:782-795. [PMID: 35166402 DOI: 10.1002/chir.23424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023]
Abstract
Novel 1,3-diamine-derived bifunctional thiourea and squaramide organocatalysts were synthesized from (+)-camphoric acid. These catalysts were easily obtained in up to two to five synthetic steps, in a flexible approach that facilitates their structure variation. Their catalytic activity was examined in the asymmetric Michael addition of 1,3-dicarbonyl compounds to several trans-β-nitrostyrenes. Yields up to 98% and enantiomeric excesses up to 74% and high diastereoselectivities when applicable (dr up to 93:7) were obtained in these reactions showing that 1,3-diamine-derived bifunctional thioureas are efficient organocatalysts.
Collapse
Affiliation(s)
- Márcia Rénio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
| | - Dina Murtinho
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
| | - M Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
5
|
Muthusamy S, Prabu A. BF 3·OEt 2 catalyzed chemoselective CC bond cleavage of α,β-enones: an unexpected synthesis of 3-alkylated oxindoles and spiro-indolooxiranes. Org Biomol Chem 2021; 20:558-564. [PMID: 34939633 DOI: 10.1039/d1ob02002a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A BF3·OEt2 catalyzed highly chemoselective formal CC double bond cleavage reaction of α,β-enones with diazoamides for the synthesis of 3-alkylated oxindoles is developed. Boron trifluoride etherate is found to be an effective catalyst for the chemoselective Cα-Cβ cleavage of enones to obtain 3-alkylated oxindoles. The product formation indicates a selective β-carbon elimination pathway of α,β-enones using the inexpensive BF3·OEt2 as a catalyst, transition metal-free conditions, an open-air environment, good functional tolerance and broad substrate scope. The synthetic utility of this protocol is highlighted by synthesizing spiro-indolooxiranes.
Collapse
Affiliation(s)
| | - Ammasi Prabu
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, India.
| |
Collapse
|
6
|
Luo K, Li Y, Fu Z, Zhang L, Wang Z, Xu J, Yu B, Wu L. Transition‐Metal‐Free Cascade Enyne Rearrangement and Cyclopropanation of Allenylphosphine Oxides with
N
‐Tosylhydrazones Accessing Alkynylcyclopropane Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yuan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Zitong Fu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Ling Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Zhipeng Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Jiangyan Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Bingjun Yu
- Lab of Plant Stress Biology, College of Life Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
- College of Chemical Engineering Xinjiang Agricultural University Urumqi 830052 People's Republic of China
| |
Collapse
|
7
|
Xu C, Qiao J, Dong S, Zhou Y, Liu X, Feng X. Asymmetric synthesis of dihydro-1,3-dioxepines by Rh(ii)/Sm(iii) relay catalytic three-component tandem [4 + 3]-cycloaddition. Chem Sci 2021; 12:5458-5463. [PMID: 34168787 PMCID: PMC8179659 DOI: 10.1039/d1sc01019k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022] Open
Abstract
Heterocycles have been widely used in organic synthesis, agrochemical, pharmaceutical and materials science industries. Catalytic three-component ylide formation/cycloaddition enables the assembly of complex heterocycles from simple starting materials in a highly efficient manner. However, asymmetric versions remain a yet-unsolved task. Here, we present a new bimetallic catalytic system for tackling this challenge. A combined system of Rh(ii) salt and chiral N,N'-dioxide-Sm(iii) complex was established for promoting the unprecedented tandem carbonyl ylide formation/asymmetric [4 + 3]-cycloaddition of aldehydes and α-diazoacetates with β,γ-unsaturated α-ketoesters smoothly, affording various chiral 4,5-dihydro-1,3-dioxepines in up to 97% yield, with 99% ee. The utility of the current method was demonstrated by conversion of products to optically active multi-substituted tetrahydrofuran derivatives. A possible reaction mechanism was provided to elucidate the origin of chiral induction based on experimental studies and X-ray structures of catalysts and products.
Collapse
Affiliation(s)
- Chaoran Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|