1
|
Goicoechea L, Losada P, Mascareñas JL, Gulías M. Palladium-Catalyzed Enantioselective C-H Arylations and Alkenylations of 2-Aminobiaryls with Atmospheric Air as the Sole Oxidant. Angew Chem Int Ed Engl 2025; 64:e202425512. [PMID: 39989385 DOI: 10.1002/anie.202425512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Optically active 2-aminobiaryls are valuable chiral frameworks with broad applications in catalysis, synthetic chemistry, and materials science. Here, we present a simple and practical methodology for their asymmetric synthesis via enantioselective palladium catalyzed C-H arylations or alkenylations of racemic precursors. The methodology utilizes a kinetic resolution strategy, producing two highly valuable enantioenriched axially chiral molecules: the C-C coupling product and the unreacted starting material. Notably, we have established reaction conditions that enable the in situ regeneration of the active Pd(II) catalyst using atmospheric air as the sole oxidant. Finally, we showcase the synthetic utility of this approach by preparing several derivatives relevant to the field of asymmetric catalysis.
Collapse
Affiliation(s)
- Laura Goicoechea
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica. Universidade de Santiago de Compostela Jenaro de la, Fuente s/n, 15782, Santiago de Compostela, Spain
| | - Pablo Losada
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica. Universidade de Santiago de Compostela Jenaro de la, Fuente s/n, 15782, Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica. Universidade de Santiago de Compostela Jenaro de la, Fuente s/n, 15782, Santiago de Compostela, Spain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica. Universidade de Santiago de Compostela Jenaro de la, Fuente s/n, 15782, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Verdhi L, Wodrich MD, Cramer N. Enantioselective Cobalt(III)-Catalyzed [4 + 1] Annulation of Benzamides: Cyclopropenes as One-Carbon Synthons. J Am Chem Soc 2025; 147:15041-15049. [PMID: 40293123 PMCID: PMC12063185 DOI: 10.1021/jacs.4c16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
A chiral cyclopentadienyl cobalt(III)-catalyzed enantioselective [4 + 1] annulation of N-chlorobenzamides with cyclopropenes is reported. The cobalt catalyst engages in the C-H activation as well as promotes the C-C bond cleavage of the cyclopropene, rendering it as a one-carbon unit for the annulation. The reaction efficiently constructs biologically relevant chiral isoindolinones with selectivities of up to 99:1 er and >20:1 E/Z ratios. The cobalt(III) catalyst displays a unique orthogonal reactivity profile delivering [4 + 1] annulation products, whereas its rhodium(III) homologue engages in the more classical [4 + 2] annulation pattern. Computational studies reveal the origin of these reactivity divergences.
Collapse
Affiliation(s)
- Lenin
Kumar Verdhi
- Laboratory
of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Matthew D. Wodrich
- Laboratory
for Computational Molecular Design, Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory
of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Panja S, Pan A, Biswas S, Das C, Guha A, Nimje RY, Murali Dhar TG, Gupta A, Mathur A, Dutta A, Roy L, Maiti D. Pallada-Electrocatalysis Enables Distal Regioselective and Atroposelective Olefination Reactions. Angew Chem Int Ed Engl 2025; 64:e202422876. [PMID: 39967328 DOI: 10.1002/anie.202422876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/20/2025]
Abstract
Regioselective and enantioselective C-H functionalization is a valuable method for synthesizing chiral and complex molecules. However, it often requires large amounts of toxic oxidants and high temperature, making it environmentally and economically adverse. Additionally, these traditional approaches generally suffer from regioselectivity and enantioselectivity issues. To overcome these limitations, a new mechanism is needed to control both of these simultaneously. Herein, we report the first Pd catalyzed regioselective distal and atroposelective olefination of simple arenes/biaryls via an electrooxidative reaction pathway. This unique electro-oxidative strategy with Pd(II) catalysis demonstrates unprecedented access to 'regio-resolved' reactions, furnishing chiral molecule synthesis under dynamic kinetic resolution without the conventional requirement of metal-based oxidants and thermal energy. Both electroanalytical studies and DFT calculations suggest the involvement of a Pd(II)/Pd(IV) catalytic cycle via a crucial Pd(III) intermediate that initiates both the distal and atroposelective olefination reactions.
Collapse
Affiliation(s)
- Subir Panja
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
| | - Avishek Pan
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
| | - Swastik Biswas
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
| | - Chandan Das
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
| | - Aritra Guha
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
| | - Roshan Y Nimje
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore, 560099, India
| | - T G Murali Dhar
- Bristol Myers Squibb, Research, Department of Chemical Synthesis, Princeton, New Jersey, 08543, United States
| | - Anuradha Gupta
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore, 560099, India
| | - Arvind Mathur
- Bristol Myers Squibb, Research, Department of Chemical Synthesis, Princeton, New Jersey, 08543, United States
| | - Arnab Dutta
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
- Center for Climate Studies, IIT Bombay, Powai, Mumbai, 400076, India
- National Center of Excellence CCU, IIT Bombay, Powai, Mumbai, 400076, India
| | - Lisa Roy
- Department of Education, IIT Kharagpur, Kharagpur, 721302, India
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
- Center for Climate Studies, IIT Bombay, Powai, Mumbai, 400076, India
- National Center of Excellence CCU, IIT Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
4
|
Lin EZ, Zhao W, Shi JK, Sun YW, Xiong X, Qi X, Sun X, Li BJ. Construction of Nonadjacent Stereocenters Through Iridium-Catalyzed Desymmetric Hydroheteroarylation of Cyclopentenes. Angew Chem Int Ed Engl 2025:e202501641. [PMID: 40240307 DOI: 10.1002/anie.202501641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/18/2025]
Abstract
Transition metal-catalyzed direct addition of (hetero)aryl C─H bond to an alkene provides an expedited route to construct benzylic stereocenter from readily available arene and alkene feedstocks with complete atom-economy. However, creation of more than one stereocenter through enantioselective C─H (hetero)arylation remains a challenging goal. Here we report an iridium-catalyzed desymmetric hydroheteroarylation of cyclopentenes to construct 1,3-nonadjacent stereocenters. A series of heteroaryl C─H bonds were cleaved site-selectively and added regio- and enantioselectively to an unactivated alkene containing an amide coordinating group, delivering valuable enantioenriched cyclopentane scaffolds containing 1,3-tertiary-tertiary or 1,3-quaternary-tertiary stereocenters with exclusive diastereoselectivity and excellent enantioselectivity.
Collapse
Affiliation(s)
- En-Ze Lin
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei Zhao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun-Kai Shi
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Wen Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xianrui Xiong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xin Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
5
|
Gou BB, Shen WJ, Gao YJ, Gu Q, You SL. Rhodium-Catalyzed Atroposelective Synthesis of Axially Chiral 1-Aryl Isoquinolines via De Novo Isoquinoline Formation. Angew Chem Int Ed Engl 2025:e202502131. [PMID: 40178184 DOI: 10.1002/anie.202502131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
Axially chiral heterobiaryl moieties serve as core skeletons for bioactive molecules, chiral ligands, and organocatalysts. Enantioselective de novo formation of the heteroaromatic ring is one of the most straightforward approaches to access enantioenriched heterobiaryls. Herein, an enantioselective de novo construction of isoquinolines by rhodium-catalyzed C─H activation/annulation of aromatic imines with alkynes is disclosed. This approach is operationally simple, allowing for rapid access to a variety of axially chiral 1-aryl isoquinolines in excellent yields and enantioselectivity (up to 98% yield and 99:1 er). The synthetic application of the current method was demonstrated by functional group transformations and suitability for millimolar-scale reactions. Detailed experimental and theoretical studies revealed the turnover-limiting step and provided insight into the origin of the enantioselectivity for this reaction.
Collapse
Affiliation(s)
- Bo-Bo Gou
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Wen-Jie Shen
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Yuan-Jun Gao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
6
|
Qian PF, Wu YX, Hu JH, Chen JH, Zhou T, Yao QJ, Zhang ZH, Wang BJ, Shi BF. Atroposelective Synthesis of Pyridoindolones Bearing Two Remote Distinct C-N Axes through Cobalt-Catalyzed Enantioselective C-H Activation. J Am Chem Soc 2025; 147:10791-10802. [PMID: 40079535 DOI: 10.1021/jacs.5c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
C-N axially chiral compounds represent an important class of atropisomers that are prevalent in bioactive and material molecules. Despite recent advances in synthetic methodologies, the asymmetric construction of atropisomers featuring multiple C-N axes has been rarely explored, significantly limiting their further applications. Herein, we report a novel atroposelective synthesis of diaxially chiral pyridoindolones featuring both six-five and six-six C-N axes through cobalt-catalyzed asymmetric C-H annulation. This approach demonstrates exceptional efficiency, yielding a diverse array of chiral pyridoindolones with excellent yields and atroposelectivities (60 examples, up to >99% yield, >99% ee, and >20:1 dr). Mechanistic studies revealed that the stereochemistry of both C-N axes were generated and fixed simultaneously during the C-H cyclometalation step, along with an unexpected asymmetric amplification effect. The practicality of this protocol is further underscored by successful gram-scale syntheses and various transformations, including the formation of a chiral phosphine ligand. Notably, exceptional photoluminescence quantum yields (ΦF up to 0.99) and positive solvatochromism were observed, coupled with significant chiroptical properties, underscoring the potential applications of these compounds in organic fluorescent materials.
Collapse
Affiliation(s)
- Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yan-Xuan Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jia-Heng Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zi-Hang Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing-Jie Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
7
|
Yang JY, Du YR, Cheng FQ, An K, Hu Y, Li ZY. Construction of Axially Chiral Dialdehydes via Rhodium-Catalyzed Enantioselective C-H Amidation. Angew Chem Int Ed Engl 2025; 64:e202421412. [PMID: 39853834 DOI: 10.1002/anie.202421412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Achieving axially chiral biaryl dialdehydes through asymmetric catalysis remains significantly challenging due to the lack of efficient strategies. In this report, we developed a rhodium-catalyzed enantioselective C-H amidation through chiral transient directing group strategy. With this new approach, a series of axially chiral amido dialdehydes were achieved in up to 86 % yields with 99.5 : 0.5 er. Furthermore, detailed mechanistic studies indicated that both the imine formation and C-H bond cleavage steps were reversible. More interestingly, the X-ray crystallographic analysis of Int-2 showed probable C-H/π interaction between biaryl group and chiral amine moiety. This process offered a convenient route to access axially chiral dialdehyde derivatives. More broadly, it demonstrated a new tool through transient and C-H/π synergistic interactions, which would stimulate further development of asymmetric catalytic system in enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Jie-Ying Yang
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Ya-Ru Du
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Fu-Qiang Cheng
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Kun An
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yuefei Hu
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Zhong-Yuan Li
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
8
|
Ma JY, Yao QJ, Jiang LC, Huang FR, Yue Q, Shi BF. Copper-Mediated Enantioselective C-H Thiolation of Ferrocenes Enabled by the BINOL Ligand. J Am Chem Soc 2025; 147:7061-7069. [PMID: 39884955 DOI: 10.1021/jacs.4c18255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Transition-metal-catalyzed enantioselective C-H activation has transformed the landscape of asymmetric synthesis, enabling the efficient conversion of C-H bonds into C-C and carbon-heteroatom (C-X) bonds. However, the formation of C-S bonds through enantioselective C-H thiolation remains underdeveloped due to challenges such as catalyst deactivation and competitive coordination of sulfur-containing compounds with chiral ligands. Herein, we report an unprecedented approach to constructing sulfur-substituted planar chiral ferrocenes (PCFs) through copper-mediated enantioselective C-H thiolation enabled by only a 2.5 mol % 1,1'-bi-2,2'-naphthol (BINOL) ligand. A variety of sulfur-substituted PCFs were obtained in good yields (up to 83%) with excellent enantioselectivity (up to >99% ee). Mechanistic studies reveal that the irreversible C-H activation serves as both the stereo- and rate-determining step and can be achieved with catalytic amounts of Cu species. Furthermore, the utility of this protocol is illustrated through gram-scale synthesis, removal of the directing group, and the synthesis of N,S-chiral ligands as well as chiral rotaxanes. This significant advancement not only expands the tool kit for constructing chiral organosulfur compounds but also highlights the potential of enantioselective C-H activation in asymmetric synthesis.
Collapse
Affiliation(s)
- Jia-Yi Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi-Jun Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lu-Chen Jiang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Fan-Rui Huang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qiang Yue
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
9
|
Bakkiyaraj M, Anbarasan P. Catalytic Enantioselective [4+1]-Annulation of Carboxylic Acids with Cyclopropenes. Org Lett 2025; 27:1638-1643. [PMID: 39939118 DOI: 10.1021/acs.orglett.4c04827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
An efficient asymmetric synthesis of 3-vinylphthalides has been accomplished through rhodium-catalyzed [4+1]-annulation of arylcarboxylic acids with cyclopropenes involving C-H bond functionalization. The method exhibited excellent compatibility for various functional groups and offered diverse substituted 3-vinylphthalides in excellent yield and enantioselectivity. Synthetic application and control experiments were also performed to demonstrate the utility and understand the reaction pathway.
Collapse
Affiliation(s)
- Marimuthu Bakkiyaraj
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
10
|
Xu Z, Geng T, Du J, Zuo Y, Hu X, Liu L, Shi Z, Huang H. Visible-light-mediated radical difunctionalization of alkenes with aromatic aldehydes. Org Biomol Chem 2025. [PMID: 39957547 DOI: 10.1039/d4ob02090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
We have developed a visible-light-mediated three-component tandem reaction of aromatic aldehydes with acrylates using a Hantzsch ester as the hydrogen atom transfer reagent, generating diethyl pentanedioate products in a one-pot synthesis. The reaction facilitates direct formation of acyl groups from the corresponding aldehydes, which are subsequently coupled successively to two molecules of acrylate in a Giese addition.
Collapse
Affiliation(s)
- Zhenhua Xu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Tao Geng
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoxiao Hu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Lin Liu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Zhiqiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
11
|
Chen JH, Yao QJ, Zhong MY, Jiang TY, Huang FR, Li X, Shi BF. Nickel(II)/Salox-Catalyzed Enantioselective C-H Functionalization. ACS CENTRAL SCIENCE 2025; 11:127-135. [PMID: 39866700 PMCID: PMC11758223 DOI: 10.1021/acscentsci.4c02049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025]
Abstract
Recently, nickel catalysts have garnered considerable attention for their efficacy and versatility in asymmetric catalysis, attributed to their distinctive properties. However, the use of cost-effective and sustainable divalent nickel catalysts in C-H activation/asymmetric alkene insertion poses significant challenges due to the intricate control of stereochemistry in the transformation of the tetracoordinate C-Ni(II) intermediate. Herein, we report a Ni(II)-catalyzed enantioselective C-H/N-H annulation with oxabicyclic alkenes. This protocol offers straightforward access to chiral [2,2,1]-bridged bicyclic compounds bearing four consecutive stereocenters with high enantioselectivity (up to 96% ee). The development of a sterically hindered chiral salicyloxazoline (Salox) ligand, TMS-Salox, is key to the success of this protocol. Mechanistic investigations unveiled that a chiral Ni(III)-metalacyclic intermediate was formed through the in situ oxidation of achiral organometallic Ni(II) species and coordination of the Salox ligand. This process led to the creation of a tailored chiral pocket that guides the approach of alkenes, thereby influencing and determining the stereochemistry.
Collapse
Affiliation(s)
- Jia-Hao Chen
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qi-Jun Yao
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ming-Yu Zhong
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Tian-Yu Jiang
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fan-Rui Huang
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiang Li
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing-Feng Shi
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
- College
of Material Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
12
|
Thorat RA, Parganiha D, Jain S, Choudhary V, Shakir B, Rohilla K, Jha RK, Kumar S. Temperature-Dependent Diastereodivergent [4 + 3] Annulation: Synthesis of Ferrocene-Fused Azepines via Rh(III) Catalysis. Org Lett 2025; 27:552-558. [PMID: 39639509 DOI: 10.1021/acs.orglett.4c03954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Herein, we disclose the first temperature-dependent diastereodivergent [4 + 3] annulation of ferrocene-p-tosylamides via C-H activation with allenes by a Rh catalyst. At room temperature, Rh-catalyzed [4 + 3] annulation selectively offered a kinetically controlled diastereomer [>20:1 diastereomeric ratio (dr)], whereas at 60 °C, a thermodynamically controlled diastereomer was obtained exclusively with >20:1 dr.
Collapse
Affiliation(s)
- Raviraj Ananda Thorat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Devendra Parganiha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Saket Jain
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Vishal Choudhary
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Batul Shakir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Komal Rohilla
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
13
|
Qian PF, Zhou G, Hu JH, Wang BJ, Jiang AL, Zhou T, Yuan WK, Yao QJ, Chen JH, Kong KX, Shi BF. Asymmetric Synthesis of Chiral Calix[4]arenes with Both Inherent and Axial Chirality via Cobalt-Catalyzed Enantioselective Intermolecular C-H Annulation. Angew Chem Int Ed Engl 2024; 63:e202412459. [PMID: 39261278 DOI: 10.1002/anie.202412459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Inherently chiral calixarenes have garnered significant attention due to their distinctive properties, yet the development of efficient catalytic asymmetric synthesis methods remains a critical challenge. Herein, we report the asymmetric synthesis of calix[4]arenes featuring inherent or both inherent and axial chirality via a cobalt-catalyzed C-H activation/annulation strategy in high yield with excellent enantio- and diastereoselectivity (up to >99 % ee and >20 : 1 dr). Electrooxidation was also suitable for this transformation to obviate the sacrificial metal oxidants, underscoring the environmentally friendly potential of this approach. A key octahedral cobaltacycle intermediate was synthesized and characterized, providing valuable insights into the mode of enantio- and diastereocontrol of this protocol. Noteworthy photoluminescence quantum yields of up to 0.94 were measured, underscoring the potential of these compounds in the domain of organic fluorescent materials.
Collapse
Affiliation(s)
- Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Gang Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Heng Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Jie Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Ao-Lian Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Wen-Kui Yuan
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Ke-Xin Kong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Henan, 453007, China
| |
Collapse
|
14
|
Zhu YL, Long YL, Yang MY, Zhou Q, Zhao N, Ma XX, Chen J. Hydroxyl-Assisted and Co(III)-Catalyzed Redox-Neutral C-H Activation/Directing Group Migration of 2-Pyridones with Propargyl Alcohols: Synthesis of Tetrasubstituted Alkenes. J Org Chem 2024; 89:17281-17290. [PMID: 39527636 DOI: 10.1021/acs.joc.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study provides a practical route to synthesize tetrasubstituted alkenes that involves Co(III)-catalyzed C-H bond activation and regioselective insertion of the alkyne, followed by chelation of the substrate hydroxyl to Co and migration of the pyridine group. Density functional theory studies revealed the origin of regioselectivity and elucidated the crucial role of the hydroxyl group for the migration of pyridine. The method can be conducted on a gram scale, is compatible with a wide range of substrates, and has a high functional group tolerance. To demonstrate its significance, the method was used for the late-stage modification of Fasudil. Furthermore, the synthetic significance of the method was demonstrated by the various derivatizations of the products, many of which exhibit intriguing fluorescence characteristics.
Collapse
Affiliation(s)
- Yue-Lu Zhu
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Yan-Lin Long
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Ming-Yang Yang
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Qi Zhou
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Na Zhao
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Xue-Xiang Ma
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jiao Chen
- College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
15
|
Zhang G, Wu X, Mao S, Li M, Hu H, Shi BF, Zhu WH. Pd(ii)-catalyzed enantioselective C-H olefination and photoregulation of sterically hindered diarylethenes. Chem Sci 2024; 15:20013-20021. [PMID: 39568903 PMCID: PMC11575610 DOI: 10.1039/d4sc05375c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Sterically hindered diarylethenes with intrinsic chirality have shown great potential in chiral signal regulation, light-controlled liquid crystals (LCs), etc. Their unique enantiospecific phototransformation between axial chirality of ring-open isomers and central chirality of ring-closed isomers can break through the bottleneck of interference between multiple chiral centers in traditional chiral diarylethenes. However, these intrinsic chiral diarylethenes require necessary chiral resolution through preparative chiral HPLC, typically resulting in limited separation efficiency and production scale. Here, we present an enantioselective olefination strategy to directly construct intrinsic chiral diarylethenes from a prochiral sterically hindered diarylethene, achieving high yields and enantioselectivity. The resulting isomers can be further decorated by incorporating mesogenic units, and the derivatives enable the successful reversible photoregulation of blue, green, and red reflection colors of LCs with excellent thermal stability, fatigue resistance, and little texture disorderliness, demonstrating the practical application potential of direct enantioselective olefination in photoregulation with intrinsic chiral diarylethenes.
Collapse
Affiliation(s)
- Guanlun Zhang
- Key Laboratory for Advanced Material, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Xu Wu
- Department Center of Chemistry for Frontier Technologies, Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Shiyu Mao
- Department Center of Chemistry for Frontier Technologies, Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Mengqi Li
- Key Laboratory for Advanced Material, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Honglong Hu
- Key Laboratory for Advanced Material, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Bing-Feng Shi
- Department Center of Chemistry for Frontier Technologies, Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Material, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
16
|
Zhang X, Bi W, Cao Z, Shen J, Chen B. Recent Developments in the Metal-Catalyzed Synthesis of Nitrogenous Heterocyclic Compounds. Molecules 2024; 29:5458. [PMID: 39598847 PMCID: PMC11597738 DOI: 10.3390/molecules29225458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Metal-catalyzed cyclization reactions have become a powerful and efficient approach for the stereoselective construction of both carbocyclic and heterocyclic ring systems. Transition metal complexes, with their ability to activate and selectively functionalize organic substrates, have revolutionized various areas of synthetic chemistry. This review highlights recent advancements in metal-catalyzed cyclization reactions, especially in the synthesis of nitrogen-containing heterocycles like imidazoles, pyridines, pyrimidines, and indoles. These advancements have significantly impacted fields such as natural product synthesis, pharmaceuticals, functional materials, and organic electronics. Novel catalytic systems, ligand designs, and reaction conditions continue to expand the capabilities of these reactions, driving further the progress made in synthetic organic chemistry. This review provides a comprehensive overview of recent research.
Collapse
Affiliation(s)
- Xueguo Zhang
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
- Shandong Juxin New Materials Co., Ltd., Zibo 255000, China
| | - Wenxuan Bi
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Zhenyu Cao
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jian Shen
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
E J, Wang L, Zeng J, Tian H, Bu X, Yang X, Zhao Z. Tunable Rh(III)-Catalyzed C(sp 2)-H Bond Functionalization of Aryl Imidates with Cyclic 1,3-Diones: Strategic Use of Directing Groups. Org Lett 2024; 26:7885-7890. [PMID: 39241179 DOI: 10.1021/acs.orglett.4c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
A tunable Rh(III)-catalyzed C(sp2)-H bond functionalization of aryl imidates with cyclic 1,3-diones was developed. With suitable and straightforward reaction condition adjustments, the C-H bond functionalization of diverse aryl imidates with cyclic 1,3-diones occurred smoothly and precisely at room temperature. Accompanied by different directing group transformations, a series of corresponding aryl nitriles, hydrophenanthridin-1(2H)-ones, spiro isoindoles, or hydrophenanthridine-1,6(2H,5H)-diones were synthesized in good yields to provide a rational directing group utilization strategy for the Rh(III)-catalyzed C(sp2)-H bond activation. Control experiments and primary mechanistic studies revealed that solvent effects and functional group electronic effects might influence the reaction's selectivity.
Collapse
Affiliation(s)
- Junnan E
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Luohe Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Jing Zeng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| |
Collapse
|
18
|
Saha R, Maharana SK, Jana NC, Bagh B. Copper-catalyzed C(sp 3)-H alkylation of fluorene with primary and secondary alcohols using a borrowing hydrogen method. Chem Commun (Camb) 2024; 60:10144-10147. [PMID: 39189332 DOI: 10.1039/d4cc03310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Despite the limited success of copper-catalyzed alkylations, (NNS)CuCl proved to be an effective catalyst for the sp3 C-H alkylation of fluorene with alcohols. Various primary alcohols and challenging secondary alcohols were successfully used. The practical applicability of the method was effectively tested with several post-functionalization reactions. This copper-catalyzed alkylation of fluorene involved a borrowing hydrogen mechanism.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| | - Suraj Kumar Maharana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| |
Collapse
|
19
|
Xu Y, Lin Y, Homölle SL, Oliveira JC, Ackermann L. Enantioselective Cobaltaphotoredox-Catalyzed C-H Activation. J Am Chem Soc 2024; 146:24105-24113. [PMID: 39143928 PMCID: PMC11363020 DOI: 10.1021/jacs.4c08459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
The quest for sustainable strategies in molecular synthesis has spurred the emergence of photocatalysis as a particularly powerful technique. In recent years, the application of photocatalysis in this context has greatly promoted the development of asymmetric catalysis. Despite the impressive advances, enantioselective photoinduced strong arene C-H activations by cobalt catalysis remain unexplored. Herein, we report a strategy that merges organic photoredox catalysis and enantioselective cobalt-catalyzed C-H activation, enabling the regio- and stereoselective dual functionalization of indoles in an enantioselective fashion. Thereby, the assembly of various chiral indolo[2,3-c]isoquinolin-5-ones was realized with high enantioselectivities of up to 99%. The robustness of the cobaltaphotoredox catalysis was demonstrated through enantioselective C-H activation and annulations in a continuous flow to provide straightforward access to central and axially chiral molecules.
Collapse
Affiliation(s)
| | | | - Simon L. Homölle
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| | - João C.
A. Oliveira
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| |
Collapse
|
20
|
Hu X, Zhao Y, He T, Niu C, Liu F, Jia W, Mu Y, Li X, Rong ZQ. Access to distal biaxial atropisomers by iridium catalyzed asymmetric C-H alkylation. Chem Sci 2024; 15:13541-13549. [PMID: 39183921 PMCID: PMC11339954 DOI: 10.1039/d4sc01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Distal biaxial atropisomers are typical structures in chiral catalysts and ligands and offer a wide variety of applications in biology and materials technology, but the development of efficient synthesis of these valuable scaffolds is still in great demand. Herein, we describe a highly efficient iridium catalyzed asymmetric C-H alkylation reaction that provides a range of new distal biaxial atropisomers with excellent yields (up to 99%) and stereoselectivity (up to 99% ee and essentially one isomer). Based on this unprecedented strategy, a polycyclic skeleton with five successive chiral centers as well as C-C and C-N (or N-N) two distal chiral axes was created successfully in mild circumstances. In addition, the optically pure products bearing fluorophores show circular polarized luminescence (CPL) properties, being potential candidate materials for CPL applications.
Collapse
Affiliation(s)
- Xueqing Hu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yunxu Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Tong He
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Caoyue Niu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Wei Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yi Mu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| |
Collapse
|
21
|
Yao QJ, Huang FR, Chen JH, Shi BF. Nickel(II)/BINOL-catalyzed enantioselective C-H activation via desymmetrization and kinetic resolution. Nat Commun 2024; 15:7135. [PMID: 39164290 PMCID: PMC11336223 DOI: 10.1038/s41467-024-51409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
The field of nickel catalysis has witnessed remarkable growth in recent years. However, the use of nickel catalysts in enantioselective C-H activation remains a daunting challenge because of their variable oxidation states, intricate coordination chemistry, and unpredictable reactivity patterns. Herein, we report an enantioselective C-H activation reaction catalyzed by commercially available and air-stable nickel(II) catalyst. Readily available and simple (S)-BINOL is used as a chiral ligand. This operationally simple protocol enables the synthesis of planar chiral metallocenes in high yields with excellent enantioselectivity through desymmetrization and kinetic resolution. Air-stable planar chiral nickelacycle intermediates are first synthesized via enantioselective C-H nickelation and shown to be possible intermediates of the reaction. Deuterium-labeling studies, alongside the characterization and transformation of chiral nickel(II) species, suggest that C-H cleavage is the enantio-determining step. Moreover, the large-scale synthesis and diverse synthetic transformations underscore the practicality of this protocol.
Collapse
Affiliation(s)
- Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
22
|
Jiang AL, Zhou G, Jiang BY, Zhou T, Xu XT, Shi BF. Pd-Catalyzed Atroposelective C-H Olefination: Diverse Synthesis of Axially Chiral Biaryl-2-carboxylic Acids. Org Lett 2024; 26:5670-5675. [PMID: 38923904 DOI: 10.1021/acs.orglett.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Axially chiral carboxylic acids are important motifs in chiral catalysts and ligands. We herein reported the synthesis of axially chiral carboxylic acids via Pd(II)-catalyzed atroposelective C-H olefination using carboxylic acid as the native directing group. A broad range of axial chiral biaryl-2-carboxylic acids were synthesized in good yields with high enantioselectivities (up to 84% yield with 99% ee). Gram-scale reaction and further transformation reactions also provide a platform for synthetic applications of this method.
Collapse
Affiliation(s)
- Ao-Lian Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Gang Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bo-Yang Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Bing-Feng Shi
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
23
|
Mandal N, Mondal P, Mandal S, Datta A. Unlocking Enantioselectivity: Synergy of 2-Pyridone and Chiral Amino Acids in Pd-Catalyzed β-C(sp 3)-H Transformations. J Org Chem 2024; 89:9223-9232. [PMID: 38885175 DOI: 10.1021/acs.joc.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Enantioselective C(sp3)-H activation has garnered significant attention in synthetic and computational chemistry. Chiral transient directing groups (TDGs) hold promise for enabling Pd(II)-catalyzed enantioselective C(sp3)-H functionalization. Despite the interest in this strategy, it presents a challenge because the stereogenic center on the chiral TDG is frequently distant from the C-H bond, leading to a mixture of functionalized products. Our computational study on Pd(II)-catalyzed enantioselective β-C(sp3)-H arylation of aliphatic ketone with chiral amino acids provides a sustainable route to synthesizing complex chiral molecular scaffolds. The cooperative action of 2-pyridone derivatives and chiral amino acids is crucial in promoting the enantio-discriminating C-H activation, oxidative addition, and reductive elimination steps. Using 5-nitro-2-pyridone as the optimal external ligand demonstrates its ability to achieve the highest level of enantioselection. In contrast, the modeled 3,5-di((trifluoromethyl)sulfonyl)-2-pyridone ligand facilitates the most straightforward C-H activation. This study underscores the pivotal role of the alkyl substituent at the α-position of the amino acid (TDG) in altering enantioselectivity.
Collapse
Affiliation(s)
- Nilangshu Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| | - Partha Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| | - Sucharita Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| |
Collapse
|
24
|
Parmar D, Kumar R, Sharma U. Chiral amino acids: evolution in atroposelective C-H activation. Org Biomol Chem 2024; 22:5032-5051. [PMID: 38837336 DOI: 10.1039/d4ob00739e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This review covers the journey of chiral amino acids as ligands in atroposelective C-H bond activation/functionalization via transition metal catalysis. Herein, we intend to demonstrate how these chiral amino acids have evolved and flourished in this stimulating field. Unprotected amino acids, mono-N-protected amino acids, and di-N-protected amino acids have been devised for atroposelective C-H activation. In each section, we have briefly discuss the key successes of amino acids in the atroposelective synthesis of biaryls, heterobiaryls, and non-biaryl atropisomers and their advantages in atroposelective C-H activation.
Collapse
Affiliation(s)
- Diksha Parmar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| | - Rohit Kumar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
25
|
Wu Y, Liu Y, Kong Y, Wu M, Wang D, Shang Y, He X. Modular Assembly of Pyrrolo[3,4- c]isoquinolines through Rh-Catalyzed Cascade C-H Activation/Annulation of O-Methyl Aryloximes with Maleimides. J Org Chem 2024; 89:8447-8457. [PMID: 38832810 DOI: 10.1021/acs.joc.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
An efficient and practical strategy for the construction of pyrrolo[3,4-c]isoquinolines via Rh(III)-catalyzed cascade C-H activation and subsequential annulation process from easily available O-methyl aryloximes and maleimides has been disclosed. This facile protocol does not require any inert atmosphere protection with good efficiency in a low loading of catalyst and exhibits good functional group tolerance and broad substrate scope. Notably, the as-prepared products show potential photophysical properties.
Collapse
Affiliation(s)
- Yinsong Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yangzilin Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| |
Collapse
|
26
|
Huang FR, Yao QJ, Zhang P, Teng MY, Chen JH, Jiang LC, Shi BF. Cobalt-Catalyzed Domino Transformations via Enantioselective C-H Activation/Nucleophilic [3 + 2] Annulation toward Chiral Bridged Bicycles. J Am Chem Soc 2024; 146:15576-15586. [PMID: 38753821 DOI: 10.1021/jacs.4c04623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Selective synthesis of chiral bridged (hetero)bicyclic scaffolds via asymmetric C-H activation constitutes substantial challenges due to the multiple reactivities of strained bicyclic structures. Herein, we develop the domino transformations through an unprecedented cobalt-catalyzed enantioselective C-H activation/nucleophilic [3 + 2] annulation with symmetrical bicyclic alkenes. The methods offer straightforward access to a wide range of chiral molecules bearing [2.2.1]-bridged bicyclic cores with four and five consecutive stereocenters in a single step. Two elaborate salicyloxazoline (Salox) ligands were synthesized based on the rational design and mechanistic understanding. The well-defined chiral pockets generated from asymmetric coordination around the trivalent cobalt catalyst direct the orientation of bicyclic alkenes, leading to excellent enantioselectivity.
Collapse
Affiliation(s)
- Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Peng Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lu-Chen Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
27
|
Ni F, Huang Y, Qiu L, Yang C. Synthetic progress of organic thermally activated delayed fluorescence emitters via C-H activation and functionalization. Chem Soc Rev 2024; 53:5904-5955. [PMID: 38717257 DOI: 10.1039/d3cs00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Thermally activated delayed fluorescence (TADF) emitters have become increasingly prominent due to their promising applications across various fields, prompting a continuous demand for developing reliable synthetic methods to access them. This review aims to highlight the progress made in the last decade in synthesizing organic TADF compounds through C-H bond activation and functionalization. The review begins with a brief introduction to the basic features and design principles of TADF emitters. It then provides an overview of the advantages and concise development of C-H bond transformations in constructing TADF emitters. Subsequently, it summarizes both transition-metal-catalyzed and non-transition-metal-promoted C-H bond transformations used for the synthesis of TADF emitters. Finally, the review gives an outlook on further challenges and potential directions in this field.
Collapse
Affiliation(s)
- Fan Ni
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yipan Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
| |
Collapse
|
28
|
Wu LS, Zhou T, Shi BF. Pd(II)-Catalyzed Desymmetrizing gem-Dimethyl C(sp 3)-H Alkenylation/Aza-Wacker Cyclization Directed by PIP Auxiliary. Org Lett 2024; 26:4457-4462. [PMID: 38775281 DOI: 10.1021/acs.orglett.4c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Desymmetrization of gem-dimethyl groups has been developed as an efficient pathway to achieve asymmetric C(sp3)-H functionalization. Herein, we described a Pd(II)-catalyzed desymmetrizing gem-dimethyl C(sp3)-H alkenylation/aza-Wacker cyclization directed by a bidentate 2-pyridinylisopropyl auxiliary. Chiral α-methyl γ-lactams were obtained in good yields (up to 82%) and high enantioselectivities (up to 91.5% ee).
Collapse
Affiliation(s)
- Le-Song Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
29
|
Wu C, Lv J, Fan H, Su W, Cai X, Yu J. Mechanochemical C-H Arylation and Alkylation of Indoles Using 3 d Transition Metal and Zero-Valent Magnesium. Chemistry 2024; 30:e202304231. [PMID: 38294073 DOI: 10.1002/chem.202304231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/01/2024]
Abstract
Although the 3 d transition-metal catalyzed C-H functionalization have been extensively employed to promote the formation of valuable carbon-carbon bonds, the persistent problems, including the use of sensitive Grignard reagents and the rigorous operations (solvent-drying, inert gas protection, metal pre-activation and RMgX addition rate control), still leave great room for further development of sustainable methodologies. Herein, we report a mechanochemical technology toward in-situ preparation of highly sensitive organomagnesium reagents, and thus building two general 3 d transition-metal catalytic platforms that enables regioselective arylation and alkylation of indoles with a wide variety of halides (including those containing post transformable functionalities and heteroaromatic rings). This mechanochemical strategy also brings unique reactivity and high step-economy in producing functionalized N-free indole products.
Collapse
Affiliation(s)
- Chongyang Wu
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Hangzhou Red Cross Hospital, Hangzhou, 310014, P. R. China
| | - Jin Lv
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hangqian Fan
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Weike Su
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xinjun Cai
- Hangzhou Red Cross Hospital, Hangzhou, 310014, P. R. China
| | - Jingbo Yu
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
30
|
Zhou G, Zhou T, Jiang AL, Qian PF, Li JY, Jiang BY, Chen ZJ, Shi BF. Electrooxidative Rhodium(III)/Chiral Carboxylic Acid-Catalyzed Enantioselective C-H Annulation of Sulfoximines with Alkynes. Angew Chem Int Ed Engl 2024; 63:e202319871. [PMID: 38289019 DOI: 10.1002/anie.202319871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 02/21/2024]
Abstract
The combination of achiral Cp*Rh(III) with chiral carboxylic acids (CCAs) represents an efficient catalytic system in transition metal-catalyzed enantioselective C-H activation. However, this hybrid catalysis is limited to redox-neutral C-H activation reactions and the adopt to oxidative enantioselective C-H activation remains elusive and pose a significant challenge. Herein, we describe the development of an electrochemical Cp*Rh(III)-catalyzed enantioselective C-H annulation of sulfoximines with alkynes enabled by chiral carboxylic acid (CCA) in an operationally friendly undivided cell at room temperature. A broad range of enantioenriched 1,2-benzothiazines are obtained in high yields with excellent enantioselectivities (up to 99 % yield and 98 : 2 er). The practicality of this method is demonstrated by scale-up reaction in a batch reactor with external circulation. A crucial chiral Cp*Rh(III) intermediate is isolated, characterized, and transformed, providing rational support for a Rh(III)/Rh(I) electrocatalytic cycle.
Collapse
Affiliation(s)
- Gang Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Ao-Lian Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Jun-Yi Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Bo-Yang Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Zi-Jia Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Jiaxing, Zhejiang, China
| |
Collapse
|
31
|
Zhang Y, Zhang JJ, Lou L, Lin R, Cramer N, Wang SG, Chen Z. Recent advances in Rh(I)-catalyzed enantioselective C-H functionalization. Chem Soc Rev 2024; 53:3457-3484. [PMID: 38411467 DOI: 10.1039/d3cs00762f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Chiral carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds are pervasive and very essential in natural products, bioactive molecules, and functional materials, and their catalytic construction has emerged as one of the hottest research fields in synthetic organic chemistry. The last decade has witnessed vigorous progress in Rh(I)-catalyzed asymmetric C-H functionalization as a complement to Rh(II) and Rh(III) catalysis. This review aims to provide the most comprehensive and up-to-date summary covering the recent advances in Rh(I)-catalyzed C-H activation for asymmetric functionalization. In addition to the development of diverse reactions, chiral ligand design and mechanistic investigation (inner-sphere mechanism, outer-sphere mechanism, and 1,4-Rh migration) will also be highlighted.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, Jiangsu, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Lujun Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Nicolai Cramer
- Institute of Chemical Sciences and Engineering (ISIC), EPFL SB ISIC LCSA, BCH 4305, 1015 Lausanne, Switzerland.
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
32
|
Garai B, Das A, Kumar DV, Sundararaju B. Enantioselective C-H bond functionalization under Co(III)-catalysis. Chem Commun (Camb) 2024; 60:3354-3369. [PMID: 38441168 DOI: 10.1039/d3cc05329f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
While progress in enantioselective C-H functionalization has been accomplished by employing 4d and 5d transition metal-based catalysts, the rapid depletion of these metals in the earth's crust poses a serious threat to making these protocols sustainable. On the other hand, because of their unique reactivity, low toxicity, and high earth abundance, newer strategies utilizing affordable 3d transition metals have come to the forefront. Among the first-row transition metals, high-valent cobalt has recently attracted a lot of attention for catalytic C-H functionalization with mono and bidentate directing groups. This approach was extended for asymmetric catalysis due to a fairly thorough knowledge of its catalytic cycles. Four major themes have been investigated as a result of this insight: (1) rational design of a chiral Cp#Co(III)-catalyst, (2) chiral carboxylic acid with achiral Cp*Co(III)-catalysts using monodentate directing groups, (3) cobalt/salox-based systems, and (4) cobalt/chiral phosphoric acid-based hybrid systems with bidentate directing groups. Herein, we highlight the recent developments in high-valent cobalt-catalyzed enantioselective C-H functionalization up to October 2023, with the strong belief that the current state-of-the-art can attract considerable interest in the synthetic community, encouraging discoveries in the evolving landscape of asymmetric catalysis.
Collapse
Affiliation(s)
- Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Abir Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Doppalapudi Vineet Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| |
Collapse
|
33
|
Wang J, Luo MP, Gu YJ, Liu YY, Yin Q, Wang SG. Chiral Cp x Rhodium(III)-Catalyzed Enantioselective Aziridination of Unactivated Terminal Alkenes. Angew Chem Int Ed Engl 2024; 63:e202400502. [PMID: 38279683 DOI: 10.1002/anie.202400502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Chiral cyclopentadienyl-rhodium(III) Cpx Rh(III) catalysis has been demonstrated to be competent for catalyzing highly enantioselective aziridination of challenging unactivated terminal alkenes and nitrene sources. The chiral Cpx Rh(III) catalysis system exhibited outstanding catalytic performance and wide functional group tolerance, yielding synthetically important and highly valuable chiral aziridines with good to excellent yields and enantioselectivities (up to 99 % yield, 93 % ee). This protocol presents a novel and effective strategy for synthesizing enantioenriched aziridines from simple alkenes. Various transformations were performed on the aziridine products, illustrating the versatility and synthetic potential of this protocol for constructing highly functionalized compounds.
Collapse
Affiliation(s)
- Juanjuan Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mu-Peng Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi-Jie Gu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu-Ying Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
34
|
Teng MY, Wu YJ, Chen JH, Huang FR, Liu DY, Yao QJ, Shi BF. Cobalt-Catalyzed Enantioselective C-H Carbonylation towards Chiral Isoindolinones. Angew Chem Int Ed Engl 2024; 63:e202318803. [PMID: 38205884 DOI: 10.1002/anie.202318803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Transition metal-catalyzed enantioselective C-H carbonylation with carbon monoxide, an essential and easily available C1 feedstock, remains challenging. Here, we disclosed an unprecedented enantioselective C-H carbonylation catalyzed by inexpensive and readily available cobalt(II) salt. The reactions proceed efficiently through desymmetrization, kinetic resolution, and parallel kinetic resolution, affording a broad range of chiral isoindolinones in good yields with excellent enantioselectivities (up to 92 % yield and 99 % ee). The synthetic potential of this method was demonstrated by asymmetric synthesis of biological active compounds, such as (S)-PD172938 and (S)-Pazinaclone. The resulting chiral isoindolinones also serve as chiral ligands in cobalt-catalyzed enantioselective C-H annulation with alkynes to construct phosphorus stereocenter.
Collapse
Affiliation(s)
- Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yong-Jie Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - De-Yang Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
35
|
Chen ZJ, Fan LJ, Xie PP, Qian PF, Hu X, Zhou T, Shi BF. Pd(II)-Catalyzed enantioselective C-H olefination toward the synthesis of P-stereogenic phosphinamides. Chem Commun (Camb) 2024; 60:1623-1626. [PMID: 38230709 DOI: 10.1039/d3cc05052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
P-Stereogenic phosphorus compounds are important structural elements in chiral ligands or organocatalysts. Herein, we report a Pd(II)-catalyzed enantioselective C-H olefination toward the synthesis of P-stereogenic phosphinamides using cheap commercially available L-pGlu-OH as a chiral ligand. A broad range of P-stereogenic phosphinamides were gained in good yields with high enantioselectivities (33 examples, up to 77% yield, 99% ee) via desymmetrization and kinetic resolution.
Collapse
Affiliation(s)
- Zi-Jia Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
| | - Ling-Jie Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Pei-Pei Xie
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
| | - Xinquan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
36
|
Tang Y, Yuan Q, Zhang S, Wang JY, Surowiec K, Li G. Enantioselective synthesis of [1,1'-binaphthalene]-8,8'-diyl bis(diphenylphosphane) and its derivatives. RSC Adv 2024; 14:2792-2795. [PMID: 38234866 PMCID: PMC10792274 DOI: 10.1039/d3ra07956b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Two 8,8' disubstituted binaphthyl ligands have been designed and synthesized in 3.1% and 11.4% overall yield, respectively. X-ray structure analysis demonstrated that a unique chiral microenvironment was created. With the assistance of a new aggregation-induced polarization (AIP) technology, chiral aggregates were determined as the fraction of polar solvent increased in the nonpolar/polar solvent system, which indicated their potential in modern asymmetric synthesis and catalysis.
Collapse
Affiliation(s)
- Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| | - Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University Changzhou Jiangsu 213164 China
| | - Kazimierz Surowiec
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| |
Collapse
|
37
|
Bhattacharya T, Ghosh S, Dutta S, Guin S, Ghosh A, Ge H, Sunoj RB, Maiti D. Combinatorial Ligand Assisted Simultaneous Control of Axial and Central Chirality in Highly Stereoselective C-H Allylation. Angew Chem Int Ed Engl 2024; 63:e202310112. [PMID: 37997014 DOI: 10.1002/anie.202310112] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
The significance of stereoselective C-H bond functionalization thrives on its direct application potential to pharmaceuticals or complex chiral molecule synthesis. Complication arises when there are multiple stereogenic elements such as a center and an axis of chirality to control. Over the years cooperative assistance of multiple chiral ligands has been applied to control only chiral centers. In this work, we harness the essence of cooperative ligand approach to control two different stereogenic elements in the same molecule by atroposelective allylation to synthesize axially chiral biaryls from its racemic precursor. The crucial roles played by chiral phosphoric acid and chiral amino acid ligand in concert helped us to obtain one major stereoisomer out of four distinct possibilities.
Collapse
Affiliation(s)
- Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Supratim Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Subhabrata Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Animesh Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| |
Collapse
|
38
|
Saito Y, Kobayashi S. Continuous-Flow Enantioselective Hydroacylations under Heterogeneous Chiral Rhodium Catalysts. Angew Chem Int Ed Engl 2024; 63:e202313778. [PMID: 37991463 DOI: 10.1002/anie.202313778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 11/23/2023]
Abstract
Transition metal-catalyzed enantioselective C-H bond functionalizations have become efficient methods for the synthesis of complex optically active molecules. Heterogeneous catalysts for this chemistry remain largely unexplored despite the advantages they offer in terms of ease of separation and reuse of catalysts. Herein, we report the development of heterogeneous chiral Rh catalysts for continuous-flow enantioselective hydroacylations. Heterogeneous catalysts could be prepared simply by mixing supports and Rh complexes. The prepared catalysts exhibited excellent activity and enantioselectivity affording optically active ketones in quantitative yields with 99 % ee's. Under the optimized reaction conditions, a turnover number >300 was achieved without the leaching of Rh species. The catalysts exhibited a wide substrate scope and in sequential-flow reactions with other heterogeneous catalysts, the syntheses of biologically active molecules and functional materials were demonstrated.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
39
|
Cattani S, Cera G. Modern Organometallic C-H Functionalizations with Earth-Abundant Iron Catalysts: An Update. Chem Asian J 2024; 19:e202300897. [PMID: 38051920 DOI: 10.1002/asia.202300897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Iron-catalyzed C-H activation has recently emerged as an increasingly powerful synthetic method for the step- and atom- economical direct C-H functionalizations of otherwise inert C-H bonds. Iron's low-cost and toxicity along with its catalytic versatility have encouraged the scientific community to elect this metal for the development of new C-H activation methodologies. Within this review, we aim to present a collection of the most recent examples of iron-catalyzed C-H functionalizations with a particular emphasis on modern synthetic strategies and mechanistic aspects.
Collapse
Affiliation(s)
- Silvia Cattani
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
40
|
Chen J, Wang J, Wang X, Wei D, Duan Z. π-Electron Fluctuation-Induced P + /C - Ambiphilic Interaction for Intramolecular C Ar -H Bond Activation. Chemistry 2023:e202302889. [PMID: 37974486 DOI: 10.1002/chem.202302889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Herein, we describe how computational mechanistic understanding has led directly to the discovery of new 2H-phosphindole for C-CAr bond activation and dearomatization reaction. We uncover an unexpected intramolecular C-H bond activation with a 2H-phosphindole derivative. This new intriguing experimental observation and further theoretical studies led to an extension of the reaction mechanism with 2H-phosphindole. Through DFT calculations, we confirm that within a five-membered ring, the polarizable PC3 unit orchestrates the formation of an electrophilic phosphorus atom (P+ ) and a nucleophilic carbon atom (C- ). This kinetically accessible ambiphilic phosphorus/carbon couple is spatially separated by geometric constraints, and their reactivity is modulated through structural resonance.
Collapse
Affiliation(s)
- Jianzhou Chen
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Junjian Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Xinghua Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Donghui Wei
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, 450001, Zhengzhou, China
| |
Collapse
|
41
|
Wu YJ, Chen JH, Teng MY, Li X, Jiang TY, Huang FR, Yao QJ, Shi BF. Cobalt-Catalyzed Enantioselective C-H Annulation of Benzylamines with Alkynes: Application to the Modular and Asymmetric Syntheses of Bioactive Molecules. J Am Chem Soc 2023; 145:24499-24505. [PMID: 38104268 DOI: 10.1021/jacs.3c10714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The transition metal-catalyzed enantioselective C-H functionalization strategy has revolutionized the logic of natural product synthesis. However, previous applications have heavily relied on the use of noble metal catalysts such as rhodium and palladium. Herein, we report the efficient synthesis of C1-chiral 1,2-dihydroisoquinolines (DHIQs) via enantioselective C-H/N-H annulation of picolinamides with alkynes catalyzed by a more sustainable and cheaper 3d metal catalyst, cobalt(II) acetate tetrahydrate. A wide range of enantiomerically enriched DHIQs were obtained in good yields with excellent enantioselectivities (up to 98% yield and >99% ee). The robustness and synthetic potential of this method were demonstrated by the modular and asymmetric syntheses of several tetrahydroisoquinoline alkaloids, including (S)-norlaudanosine, (S)-laudanosine, (S)-xylopinine, (S)-sebiferine, and (S)-cryptostyline II, and the asymmetric syntheses of key intermediates of (+)-solifenacin, FR115427, and (+)-NPS R-568.
Collapse
Affiliation(s)
- Yong-Jie Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiang Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tian-Yu Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
42
|
Jiang TY, Ke YT, Wu YJ, Yao QJ, Shi BF. Pd(II)-Catalyzed atroposelective C-H olefination: synthesis of enantioenriched N-aryl peptoid atropisomers. Chem Commun (Camb) 2023; 59:13518-13521. [PMID: 37886838 DOI: 10.1039/d3cc04425d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Herein, we reported the synthesis of enantioenriched N-aryl peptoid atropisomers via Pd(II)-catalyzed atroposelective C-H olefination using the easily accessible L-pyroglutamic acid (L-pGlu-OH) as the chiral ligand. A series of optically active N-aryl peptoid atropisomers were obtained in synthetically useful yields with high enantioselectivities.
Collapse
Affiliation(s)
- Tian-Yu Jiang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Yi-Ting Ke
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Yong-Jie Wu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Qi-Jun Yao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
43
|
Losada P, Goicoechea L, Mascareñas JL, Gulías M. Axially Chiral 2-Hydroxybiaryls by Palladium-Catalyzed Enantioselective C-H Activation. ACS Catal 2023; 13:13994-13999. [PMID: 37942264 PMCID: PMC10629138 DOI: 10.1021/acscatal.3c03867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Indexed: 11/10/2023]
Abstract
This article describes the discovery and development of a palladium-catalyzed asymmetric C-H olefination of 2-hydroxybiaryls. The strategy allows a direct assembly of optically active, axially chiral 2-substituted-2'-hydroxybiaryls from readily available precursors and demonstrates that the native hydroxy unit of the substrates can work as an efficient directing group for the C-H activation. This represents a substantial advantage over other approaches that require the preinstallation of metal coordinating units. The simplicity of the approach and versatility of the products allow a practical and efficient synthesis of a broad variety of optically active binaphthyl derivatives.
Collapse
Affiliation(s)
- Pablo Losada
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Laura Goicoechea
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Moisés Gulías
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
44
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
45
|
Qian PF, Zhou T, Shi BF. Transition-metal-catalyzed atroposelective synthesis of axially chiral styrenes. Chem Commun (Camb) 2023; 59:12669-12684. [PMID: 37807950 DOI: 10.1039/d3cc03592a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Axially chiral styrenes, a type of atropisomer analogous to biaryls, have attracted great interest because of their unique presence in natural products and asymmetric catalysis. Since 2016, a number of methodologies have been developed for the atroposelective construction of these chiral skeletons, involving both transition metal catalysis and organocatalysis. In this feature article, we aim to provide a comprehensive understanding of recent advances in the asymmetric synthesis of axially chiral styrenes catalyzed by transition metals, integrating scattered work with different catalytic systems together. This feature article is cataloged into five sections according to the strategies, including asymmetric coupling, enantioselective C-H activation, central-to-axial chirality transfer, asymmetric alkyne functionalization, and atroposelective [2+2+2] cycloaddition.
Collapse
Affiliation(s)
- Pu-Fan Qian
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Tao Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| |
Collapse
|
46
|
Dethe DH, Kumar V, Shukla M. A palladium catalyzed asymmetric desymmetrization approach to enantioenriched 1,3-disubstituted isoindolines. Chem Sci 2023; 14:11267-11272. [PMID: 37860662 PMCID: PMC10583692 DOI: 10.1039/d3sc03496h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Herein, we report the first palladium/MPAA catalyzed enantioselective C-H activation/[4 + 1] annulation of diarylmethyltriflamide and olefins to construct chiral cis-1,3-disubstituted isoindoline derivatives. The use of a readily accessible mono-N-protected amino acid as a chiral ligand improves the efficiency and enantioselectivity of the catalytic transformation. The developed method provides access to both enantiomers of a product using either d or l-phenylalanine derivative as a chiral ligand facilitating the synthesis of both optically active 1,3-disubstituted isoindoline derivatives.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208016 India
| | - Vimlesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208016 India
| | - Manmohan Shukla
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208016 India
| |
Collapse
|
47
|
Wu YJ, Wang ZK, Jia ZS, Chen JH, Huang FR, Zhan BB, Yao QJ, Shi BF. Synthesis of Axially Chiral Biaryls through Cobalt(II)-Catalyzed Atroposelective C-H Arylation. Angew Chem Int Ed Engl 2023; 62:e202310004. [PMID: 37585308 DOI: 10.1002/anie.202310004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Highly efficient synthesis of axially chiral biaryl amines through cobalt-catalyzed atroposelective C-H arylation using easily accessible cobalt(II) salt and salicyloxazoline ligand has been reported. This methodology provides a straightforward and sustainable access to a broad range of enantioenriched biaryl-2-amines in good yields (up to 99 %) with excellent enantioselectivities (up to 99 % ee). The synthetic utility of the unprecedented method is highlighted by its scalability and diverse transformations.
Collapse
Affiliation(s)
- Yong-Jie Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhen-Kai Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhen-Sheng Jia
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bei-Bei Zhan
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
48
|
Kher K, Dhaker M, Baroliya PK. Recent advances in electrochemical functionalization using diazonium salts. Org Biomol Chem 2023; 21:7052-7061. [PMID: 37610707 DOI: 10.1039/d3ob00978e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Arenediazonium salts have gained attention in the scientific community due to their numerous synthetic applications. In the traditional method of dediazoniation of arenediazonium salts, the requirements for toxic oxidants and costly catalysts affect their cost-effectiveness and sustainability. However, recent advances in synthetic organic electrochemistry allow for the in situ reduction of arenediazonium salts, affording different functionalizations under mild reaction conditions and with a shorter reaction time. Herein, we report advances up to now of facile organic electrochemical syntheses using arenediazonium salt precursors that avoid the use of hazardous reductants.
Collapse
Affiliation(s)
- Krishna Kher
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India.
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India.
| | | |
Collapse
|
49
|
Logeswaran R, Jeganmohan M. Dehydrogenative Cross-Coupling of α,β-Unsaturated Compounds with Unactivated Olefins via Co(III) Catalysis. Org Lett 2023; 25:6284-6289. [PMID: 37603494 DOI: 10.1021/acs.orglett.3c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
An oxidative cross-coupling of α,β-unsaturated compounds with unactivated alkenes via cobalt-catalyzed vinylic C-H activation has been developed. The present catalytic reaction was examined with various differently functionalized unsaturated compounds and unactivated olefins. In these reactions, highly valuable amide functionalized butadienes and indenones were prepared in good to excellent yields. A possible reaction mechanism is proposed involving directed olefinic C-H activation through a base-assisted deprotonation pathway.
Collapse
Affiliation(s)
- Ravichandran Logeswaran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
50
|
Li T, Shi L, Wang X, Yang C, Yang D, Song MP, Niu JL. Cobalt-catalyzed atroposelective C-H activation/annulation to access N-N axially chiral frameworks. Nat Commun 2023; 14:5271. [PMID: 37644016 PMCID: PMC10465517 DOI: 10.1038/s41467-023-40978-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
The N-N atropisomer, as an important and intriguing chiral system, was widely present in natural products, pharmaceutical lead compounds, and advanced material skeletons. The anisotropic structural characteristics caused by its special axial rotation have always been one of the challenges that chemists strive to overcome. Herein, we report an efficient method for the enantioselective synthesis of N-N axially chiral frameworks via a cobalt-catalyzed atroposelective C-H activation/annulation process. The reaction proceeds under mild conditions by using Co(OAc)2·4H2O as the catalyst with a chiral salicyl-oxazoline (Salox) ligand and O2 as an oxidant, affording a variety of N-N axially chiral products with high yields and enantioselectivities. This protocol provides an efficient approach for the facile construction of N-N atropisomers and further expands the range of of N-N axially chiral derivatives. Additionally, under the conditions of electrocatalysis, the desired N-N axially chiral products were also successfully achieved with good to excellent efficiencies and enantioselectivities.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xinhai Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chen Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| |
Collapse
|