1
|
Golmohammadi F, Osmani C, Rominger F, Balalaie S. Synthesis of Functionalized Indolizines through 1,3-Dipolar Cycloaddition of Zwitterionic Ketenimines and Pyridinium Salts. J Org Chem 2025; 90:5973-5985. [PMID: 40252036 DOI: 10.1021/acs.joc.5c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
A straightforward and efficient strategy for the synthesis of fully functionalized indolizines has been developed through a transition metal- and oxidant-free [3 + 2] cycloaddition reaction of zwitterionic ketenimines and pyridinium salts. This versatile method proceeds under mild conditions, affording functionalized indolizines in moderate to good yields. This efficient approach involves an intermolecular [3 + 2] cycloaddition, followed by enamine/imine tautomerization and aromatization. Notably, this method demonstrates broad functional group compatibility and allows for facile scalability, making it a valuable tool for the synthesis of indolizine-based frameworks in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Farhad Golmohammadi
- Peptide Chemistry Research Institute, K. N. Toosi University Of Technology, P.O. Box 15875-4416 Tehran 19697, Iran
| | - Chiman Osmani
- Peptide Chemistry Research Institute, K. N. Toosi University Of Technology, P.O. Box 15875-4416 Tehran 19697, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, Heidelberg D-69120, Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University Of Technology, P.O. Box 15875-4416 Tehran 19697, Iran
| |
Collapse
|
2
|
Li CT, Liu LG, Li JZ, Dong HX, Novikov RA, Wang ZS, Hong X, Zhou B, Ye LW. Ligand-controlled divergent asymmetric C(sp 3)-H and C(sp 3)-O insertion via vinyl cations. Nat Commun 2025; 16:4107. [PMID: 40316525 PMCID: PMC12048635 DOI: 10.1038/s41467-025-59328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/16/2025] [Indexed: 05/04/2025] Open
Abstract
The insertion of either C-H bond or C-O bond via bond cleavage has proven to be a very attractive strategy for the construction of C-C and C-O bonds in organic synthesis. However, such divergent catalytic asymmetric reactions for the selective formation of C(sp3)-H insertion and formal C(sp3)-O insertion products from the same precursors are rarely explored. Herein, we report a ligand-controlled divergent asymmetric C(sp3)-H insertion and formal C(sp3)-O insertion reaction via vinyl cations by a non-diazo approach, leading to the practical and atom-economical assembly of a range of chiral spiro and fused polycyclic pyrroles in generally moderate to excellent yields with generally excellent chemo- and enantioselectivities. Importantly, this protocol not only represents a rare example of successful ligand-controlled asymmetric divergent insertion reaction, but also constitutes an enantioselective 1,6-C-H insertion and an asymmetric carbenoid insertion into acetals via a non-diazo approach.
Collapse
Affiliation(s)
- Cui-Ting Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Li-Gao Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Jia-Zheng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Hao-Xuan Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow, Russian Federation
| | - Ze-Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Wang XN, Liu Y, Shen X, Wang N, Liu X, Chen R, Chang J. TMSOTf/TfOH-Promoted [4 + 2] Annulation of Ynamides with 2-Aminoarylnitriles To Construct 2,4-Diaminoquinolines. J Org Chem 2025; 90:3930-3935. [PMID: 40059396 DOI: 10.1021/acs.joc.4c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
An effective strategy to synthesize 2,4-diaminoquinoline compounds has been efficaciously developed via a TMSOTf/TfOH-promoted [4 + 2] annulation of ynamides with 2-aminoarylnitriles. Compared with the reported transition-metal catalysts, this metal-free promotion system presented a remarkable advancement, enabling the facile and regiospecific assembly of 2,4-diaminoquinoline frameworks with wide functional group compatibility and moderate to excellent yields.
Collapse
Affiliation(s)
- Xiao-Na Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yangpeng Liu
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaoxiao Shen
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Nanfang Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xinsong Liu
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ruotong Chen
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Junbiao Chang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
4
|
Zhu XQ, Meng ZX, Zhou B, Teng MY, Ye LW. Isoxazoles as efficient alkyne amination reagents in divergent heterocycle synthesis. Chem Soc Rev 2025; 54:2137-2153. [PMID: 39943861 DOI: 10.1039/d4cs01329h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
During the past decades, the exploration of new alkyne amination reactions has attracted increasing attention due to the high efficiency in heterocycle synthesis. In addition to the well-established alkyne amination reagents (such as nitrogen ylides and azides), isoxazoles and their derivatives have been proven to be efficient amination reagents, especially the N,O-bifunctional reagents of alkynes, in the transition metal-catalyzed transformation of alkynes through metal carbene intermediates. Isoxazole derivatives have been extensively applied to the rapid synthesis of a diverse range of structurally complex N-containing molecules, especially the valuable N-heterocycles in atom-economic manner. In this review, we summarize the latest trends and developments of isoxazole-enabled alkyne amination reactions and their applications in divergent heterocycle synthesis, including amination of ynamides, amination of ynol ethers, amination of thioynol ethers, amination of electron-deficient alkynes, amination of unpolarized alkynes and asymmetric amination of alkynes. Finally, we list the current challenges and opportunities for potential breakthroughs in this field.
Collapse
Affiliation(s)
- Xin-Qi Zhu
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Zhi-Xu Meng
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Ming-Yu Teng
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Long-Wu Ye
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Zhang ZT, Luo C, Yu ZX, Xu Z, Ye LW, Zhou B. Copper-Catalyzed Intermolecular [2 + 2 + 2] Annulation of Diynes with Alkynes: Construction of Carbazoles. Org Lett 2025; 27:880-886. [PMID: 39788871 DOI: 10.1021/acs.orglett.4c04623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Transition-metal-catalyzed [2 + 2 + 2] annulation of alkynes is an efficient pathway for the synthesis of aromatic compounds. However, most of the established methods require noble metal catalysts. Herein, we report a copper-catalyzed intermolecular [2 + 2 + 2] annulation of diynes with alkynes through vinyl cation intermediates, enabling the atom-economical preparation of biologically important carbazole skeletons. The reaction shows good regioselectivity in the reaction of aryl(alkyl)alkynes. Moreover, preliminary results have also been obtained for the related catalytic atroposelective transformation. This reaction represents a rare example of non-noble-metal-catalyzed intermolecular [2 + 2 + 2] annulation of ynamides through the vinyl cation pathway.
Collapse
Affiliation(s)
- Zhen-Tao Zhang
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, China
| | - Chen Luo
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, China
| | - Zu-Xin Yu
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Long-Wu Ye
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhou
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, China
| |
Collapse
|
6
|
Chen HH, Chen YB, Gao JZ, Ye LW, Zhou B. Copper-Catalyzed Enantioselective Dehydro-Diels-Alder Reaction: Atom-Economical Synthesis of Axially Chiral Carbazoles. Angew Chem Int Ed Engl 2024; 63:e202411709. [PMID: 39267546 DOI: 10.1002/anie.202411709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
The dehydro-Diels-Alder (DDA) reaction is a powerful method for the construction of aromatic compounds. However, the enantioselective DDA reaction has been rarely developed, probably due to the competitive thermal reaction. Herein, we report a copper-catalyzed enantioselective DDA reaction through vinyl cation pathway. The reaction leads to the atom-economical synthesis of axially chiral phenyl and indolyl carbazoles in generally excellent yields with good to excellent atroposelectivities. This methodology represents the first example of non-noble metal-catalyzed enantioselective DDA reaction. Notably, new chiral ligand and organocatalyst derived from the constructed axially chiral carbazole are demonstrated to be useful in asymmetric catalysis.
Collapse
Affiliation(s)
- Hua-Hong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jun-Zhe Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| |
Collapse
|
7
|
Ye X, Bao P, Pan Y, Xiao H, Li Q, He G. Base-promoted tandem ring-opening/ring-closing of N-alkynyl-2-oxazolidinones enables facile synthesis of 2-oxazolines. Org Biomol Chem 2024; 22:9388-9393. [PMID: 39480528 DOI: 10.1039/d4ob01561d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
A K2CO3-promoted tandem ring-opening/ring-closing of N-alkynyl-2-oxazolidinones has been described, affording 2-oxazolines in 42-99% yields without column chromatography isolation. This operationally simple reaction proceeds under ambient conditions without a transition-metal catalyst and an external oxidant and can be applied for the late-stage functionalization of biologically active compounds.
Collapse
Affiliation(s)
- Xingyuan Ye
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Peng Bao
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yan Pan
- Department of Pharmacy, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Han Xiao
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Qiuwen Li
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guangke He
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
8
|
Zheng YX, Liu LG, Hu TQ, Li X, Xu Z, Hong X, Lu X, Zhou B, Ye LW. Asymmetric Büchner reaction and arene cyclopropanation via copper-catalyzed controllable cyclization of diynes. Nat Commun 2024; 15:9227. [PMID: 39455569 PMCID: PMC11511906 DOI: 10.1038/s41467-024-53605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The asymmetric Büchner reaction and related arene cyclopropanations represent one type of the powerful methods for enantioselective dearomatization. However, examples of asymmetric Büchner reactions via a non-diazo approach are quite scarce, and the related arene cyclopropanation based on alkynes has not been reported. Herein, we disclose an asymmetric Büchner reaction and the related arene cyclopropanation by copper-catalyzed controllable cyclization of N-propargyl ynamides via vinyl cation intermediates, leading to chiral tricycle-fused cycloheptatrienes and benzonorcaradienes in high yields and enantioselectivities. Importantly, this protocol represents an asymmetric arene cyclopropanation reaction of alkynes and an asymmetric Büchner reaction based on vinyl cations.
Collapse
Affiliation(s)
- Yan-Xin Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Li-Gao Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Tian-Qi Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xiao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xin Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Robert EGL, Waser J. Ficini Reaction with Acrylates for the Stereoselective Synthesis of Aminocyclobutanes. Chemistry 2024; 30:e202401810. [PMID: 38869382 DOI: 10.1002/chem.202401810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
The first Ficini reaction between ynamides and acrylates is reported herein. The reaction is catalyzed by B(C6F5)3 acting as a Lewis acid and is giving access to stable tri-substituted aminocyclobutenes in high yield. The resulting products can be hydrogenated and epimerized under basic conditions or in presence of a Lewis acid, providing two distinct trans- aminocyclobutane monoester stereoisomers in high yield and diastereoisomeric ratio (up to quantitative yield and >99 : 1 dr).
Collapse
Affiliation(s)
- Emma G L Robert
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| |
Collapse
|
10
|
Li FS, Zou XY, Hu TQ, Sun Q, Xu Z, Zhou B, Ye LW. Asymmetric one-carbon ring expansion of diverse N-heterocycles via copper-catalyzed diyne cyclization. SCIENCE ADVANCES 2024; 10:eadq7767. [PMID: 39383216 PMCID: PMC11463259 DOI: 10.1126/sciadv.adq7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
One-carbon ring expansion reaction of N-heterocycles has gained particular attention in the past decade because this method allows for the conversion of readily available N-heterocycles into potentially useful complex ring-expanded N-heterocycles, which are inaccessible by traditional methods. However, the catalytic asymmetric variant of this reaction has been rarely reported to date. Herein, we disclose an enantioselective one-carbon ring expansion reaction through chiral copper-catalyzed diyne cyclization, leading to the practical, atom-economic and divergent assembly of an array of valuable chiral N-heterocycles bearing a quaternary stereocenter in generally good to excellent yields with excellent enantioselectivities (up to >99% ee). This protocol represents the first example of asymmetric one-carbon ring expansion reaction of N-heterocycles based on alkynes.
Collapse
Affiliation(s)
- Fu-Shuai Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiu-Yuan Zou
- Key Laboratory of of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Tian-Qi Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing Sun
- Key Laboratory of of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Hu QQ, Wang LY, Chen XH, Geng ZX, Chen J, Zhou L. Lewis Acid Catalyzed Cycloaddition of Bicyclobutanes with Ynamides for the Synthesis of Polysubstituted 2-Amino-bicyclo[2.1.1]hexenes. Angew Chem Int Ed Engl 2024; 63:e202405781. [PMID: 38782734 DOI: 10.1002/anie.202405781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Synthesis of bicyclic scaffolds has gained significant attention in drug discovery due to their potential to mimic benzene bioisosteres. Here, we present a mild and scalable Sc(OTf)3-catalyzed [3+2] cycloaddition of bicyclo[1.1.0]butanes (BCBs) with ynamides, yielding a diverse array of polysubstituted 2-amino-bicyclo[2.1.1]hexenes in good to excellent yields. These products offer valuable starting materials for the construction of novel functionalized bicyclo[1.1.0]butanes. Preliminary mechanistic studies indicate that the reaction involves a nucleophilic addition of ynamides to bicyclo[1.1.0]butanes, followed by an intramolecular cyclization of in situ generated enolate and keteniminium ion. We expect that these findings will encourage utilization of complex bioisosteres and foster further investigation into BCB-based cycloaddition chemistry.
Collapse
Affiliation(s)
- Qian-Qian Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Liu-Yang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xing-Hao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ze-Xiang Geng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
12
|
Galibert-Guijarro A, Tronc J, Mouysset D, Siri D, Gastaldi S, Bertrand MP, Feray L. Investigation of UV Light-Promoted Synthesis of α-Sulfonyl Amides from N-Sulfonyl Ynamides. J Org Chem 2024; 89:9695-9699. [PMID: 38965935 DOI: 10.1021/acs.joc.4c01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
UV light-promoted synthesis of α-sulfonyl amides from N-sulfonyl ynamides without any additives is reported. The reaction proceeds through a radical chain mechanism involving the photoinduced cleavage of the nitrogen-sulfur bond and addition of an electrophilic sulfonyl radical to the triple bond of the ynamide followed by β-fragmentation of the sulfonyl group leading to a ketenimine hydrated upon workup. This highly efficient rearrangement leads, after acidic treatment, to a wide range of α-sulfonyl amides in high yields.
Collapse
Affiliation(s)
| | - Jérémy Tronc
- Aix Marseille Univ, CNRS, ICR, Marseille, 13013, France
| | | | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, Marseille, 13013, France
| | | | | | | |
Collapse
|
13
|
Kanikarapu S, Prasad R, Sethi M, Sahoo AK. Gold(I)-catalysed cyclisation of ( E)-ketene- N, O-acetals: a synthetic route toward spiro-oxazole-γ-lactones. Org Biomol Chem 2024; 22:4672-4679. [PMID: 38805239 DOI: 10.1039/d4ob00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In this study, we developed a cascade 5,5-cyclisation of internal ketene-N,O-acetals utilizing homogeneous Au(I) catalysis. This process involves an initial 5-exo-dig carbocyclisation, followed by a 5-exo-dig heterocyclisation that stereoselectively incorporates the O-atom of a water molecule into an N-tethered propargyl alkyne. This sequential reaction results in the formation of one C-C, two C-O, and two C-I bonds, ultimately leading to the synthesis of spiro-α-iodo-γ-lactone structures featuring oxazole rings in good yields.
Collapse
Affiliation(s)
- Suresh Kanikarapu
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India.
| | - Rangu Prasad
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India.
| | - Manoj Sethi
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India.
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
14
|
Chen J, Wang N, Qi C, Chang J, Wang XN. Brønsted acid catalyzed Ficini [2 + 2] cycloaddition of ynamides with enones. Org Biomol Chem 2024; 22:4264-4268. [PMID: 38742913 DOI: 10.1039/d4ob00470a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Herein, we describe a novel metal-free Brønsted acid-catalyzed Ficini [2 + 2] cycloaddition of ynamides with enones under mild reaction conditions, leading to the formation of various cyclobutenamides in generally good to excellent yields within short reaction times. This work represents the first example of ynamides involved in a nonmetal-catalyzed [2 + 2] cycloaddition with enones.
Collapse
Affiliation(s)
- Jinyue Chen
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Nanfang Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Chaofan Qi
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Junbiao Chang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Xiao-Na Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
15
|
Huang B, Xing D, Jiang H, Huang L. Lewis Acid-Catalyzed Formal [4 + 2] Reaction of Alkynyl Sulfides and 2-Pyrones To Access Polysubstituted Aryl Sulfides. J Org Chem 2024; 89:7280-7285. [PMID: 38716567 DOI: 10.1021/acs.joc.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A practical and efficient method to access polysubstituted aryl sulfides has been discovered via a Lewis acid-catalyzed reaction between alkynyl sulfide and 2-pyrone, involving a Diels-Alder/retro-Diels-Alder pathway. Alkynyl sulfide as an electron-rich dienophile and 2-pyrones as electron-poor dienes are conjunctively transformed into a series of polysubstituted aryl sulfides with broad functional group compatibility in good to excellent yields (40 examples, 43-88% yield). The robustness and practicality of the protocol has been demonstrated through gram-scale synthesis and the ease of transformation of the resulting products.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Donghui Xing
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liangbin Huang
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
16
|
Wang N, Xu HJ, Li T, Ye LW, Zhou B. Copper-Catalyzed [2 + 2] Cyclization/Ring Expansion of Ene-Ynamides: Construction of Medium- and Large-Sized Rings. Org Lett 2024; 26:3861-3866. [PMID: 38679881 DOI: 10.1021/acs.orglett.4c01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Catalytic cyclization of enynes is an efficient approach for the preparation of cyclic compounds, and a large variety of four- to six-membered rings could be synthesized using this method. However, it has been rarely employed for the construction of medium- and large-sized rings. Herein, we describe a copper-catalyzed cycloisomerization of ene-ynamides through a [2 + 2] cyclization/electrocyclic ring opening cascade, leading to the atom-economical assembly of indole-fused medium- and large-sized rings in moderate to excellent yields under mild reaction conditions. Importantly, the synthetic utility of this reaction was demonstrated by the convenient synthesis of iprindole.
Collapse
Affiliation(s)
- Nan Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Hao-Jin Xu
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Long-Wu Ye
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhou
- Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
17
|
Qi C, Shen X, Fang W, Chang J, Wang XN. TMSOTf-Catalyzed [4 + 2] Annulation of Ynamides and β-(2-Aminophenyl)-α,β-ynones for the Synthesis 2-Aminoquinolines. Org Lett 2024; 26:3503-3508. [PMID: 38661174 DOI: 10.1021/acs.orglett.4c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A metal-free TMSOTf-catalyzed [4 + 2] annulation of ynamides with β-(2-aminophenyl)-α,β-ynones enables the regiospecific and facile assembly of 2-aminoquinoline frameworks. The catalyst TMSOTf presented a remarkable advancement compared to previously reported transition-metal catalysts. A wide range of 3-aryl/alkyl-substituted 2-aminoquinolines were generated in moderate to excellent yields due to the mild conditions.
Collapse
Affiliation(s)
- Chaofan Qi
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaoxiao Shen
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Wozheng Fang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Junbiao Chang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiao-Na Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
18
|
Chen YB, Liu LG, Wang ZQ, Chang R, Lu X, Zhou B, Ye LW. Enantioselective functionalization of unactivated C(sp 3)-H bonds through copper-catalyzed diyne cyclization by kinetic resolution. Nat Commun 2024; 15:2232. [PMID: 38472194 PMCID: PMC10933314 DOI: 10.1038/s41467-024-46288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Site- and stereoselective C-H functionalization is highly challenging in the synthetic chemistry community. Although the chemistry of vinyl cations has been vigorously studied in C(sp3)-H functionalization reactions, the catalytic enantioselective C(sp3)-H functionalization based on vinyl cations, especially for an unactivated C(sp3)-H bond, has scarcely explored. Here, we report an asymmetric copper-catalyzed tandem diyne cyclization/unactivated C(sp3)-H insertion reaction via a kinetic resolution, affording both chiral polycyclic pyrroles and diynes with generally excellent enantioselectivities and excellent selectivity factors (up to 750). Importantly, this reaction demonstrates a metal-catalyzed enantioselective unactivated C(sp3)-H functionalization via vinyl cation and constitutes a kinetic resolution reaction based on diyne cyclization. Theoretical calculations further support the mechanism of vinyl cation-involved C(sp3)-H insertion reaction and elucidate the origin of enantioselectivity.
Collapse
Affiliation(s)
- Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhe-Qi Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Rong Chang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
19
|
Zhuo SY, Ye JL, Zheng X. Copper-catalyzed room-temperature cross-dehydrogenative coupling of secondary amides with terminal alkynes: a chemoselective synthesis of ynamides. Org Biomol Chem 2024; 22:1299-1309. [PMID: 38259138 DOI: 10.1039/d3ob02032k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A copper-catalyzed aerobic oxidative cross-dehydrogenative coupling reaction between secondary amides and terminal alkynes has been developed. With the aid of ligands and 3 Å molecular sieves, ynamides can be efficiently synthesized at room temperature and conveniently scaled up. A legitimate mechanism involving nitrogen-centred radicals and copper trivalent intermediates has been proposed.
Collapse
Affiliation(s)
- Shuang-Yan Zhuo
- Xiamen Key Laboratory of Chiral Drugs, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jian-Liang Ye
- Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Xiao Zheng
- Xiamen Key Laboratory of Chiral Drugs, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
20
|
Talukdar V, Mondal K, Kumar Dhaked D, Das P. CuI/DMAP-Catalyzed Oxidative Alkynylation of 7-Azaindoles: Synthetic Scope and Mechanistic Studies. Chem Asian J 2024:e202300987. [PMID: 38258444 DOI: 10.1002/asia.202300987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
An efficient and practical method for the N-alkynylation of 7-azaindoles has been established by using CuI/DMAP catalytic system at room temperature and in open air. This simple protocol has been successfully employed in the synthesis of a wide range of N-alkynylated 7-azaindoles with good yields. Also, this approach is well-suited for large-scale N-alkynylation reactions. The designed N-alkynylated 7-azaindoles were further subjected to Cu-/Ir-catalyzed alkyne-azide cycloaddition (CuAAC/IrAAC) or "click" reaction for the rapid synthesis of 1,4-/1,5 disubstituted 1,2,3-triazole decorated 7-azaindoles. A mechanistic study based on density functional theory (DFT) calculations and ultraviolet-visible (UV) spectroscopic studies revealed that the CuI and DMAP combination formed a [CuII (DMAP)2 I2 ] species, which acts as an active catalyst. The DFT method was used to assess the energetic viability of an organometallic in the C-N bond formation pathway originating from the [CuII (DMAP)2 I2 ] complex. We expect that the newly designed Cu/DMAP/alkyne system will offer valuable insights into the field of Cu-catalyzed transformations.
Collapse
Affiliation(s)
- Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institution of Technology (Indian School of Mines), Dhanbad, 826004, Dhanbad (Jharkhand), India
| | - Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institution of Technology (Indian School of Mines), Dhanbad, 826004, Dhanbad (Jharkhand), India
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, (NIPER) Kolkata, 700054, Kolkata, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institution of Technology (Indian School of Mines), Dhanbad, 826004, Dhanbad (Jharkhand), India
| |
Collapse
|
21
|
Wang XN, Wang Y, Wang N, Chen J, Qi C, Chang J. TMSOTf-Catalyzed Reactions of N-Arylynamides with Sulfilimines To Construct 2-Aminoindoles and α-Arylated Amidines. J Org Chem 2024. [PMID: 38178688 DOI: 10.1021/acs.joc.3c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Here, we disclose an efficient TMSOTf-catalyzed C-H annulation of aryl-terminated N-arylynamides with sulfilimines, leading to the practical assembly of various valuable 2-aminoindoles in generally moderate to excellent yields with a broad range of functional groups, while nonaryl terminated N-arylynamides undergo TMSOTf-catalyzed aminative arylation with sulfilimines providing α-arylated amidines.
Collapse
Affiliation(s)
- Xiao-Na Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Yanan Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Nanfang Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Jinyue Chen
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Chaofan Qi
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Junbiao Chang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| |
Collapse
|
22
|
Cui DQ, Wang YQ, Zhou B, Ye LW. Brønsted-Acid-Catalyzed Enantioselective Desymmetrization of 1,3-Diols: Access to Chiral β-Amino Alcohol Derivatives. Org Lett 2023; 25:9130-9135. [PMID: 38112554 DOI: 10.1021/acs.orglett.3c03525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, we describe a Brønsted-acid-catalyzed enantioselective desymmetrization of 1,3-diols with alkynes through a hydroalkoxylation/hydrolysis process. The reaction leads to the atom-economical synthesis of valuable chiral β-amino alcohols under mild reaction conditions. Further synthetic transformations based on the β-amino alcohol moiety provide divergent approaches toward chiral N-containing heterocycles.
Collapse
Affiliation(s)
- Da-Qiu Cui
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yu-Qi Wang
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Bo Zhou
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Long-Wu Ye
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
23
|
Wang ZS, Xu HJ, Chen YB, Ye LW, Zhou B, Qian PC. Copper-catalyzed atroposelective formal [4+1] annulation of 1,2-diketones with vinyl cations. Chem Commun (Camb) 2023. [PMID: 38013471 DOI: 10.1039/d3cc04817a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The enantioselective transformation of easily accessible 1,2-diketones represents a quick pathway towards enantioenriched molecules. Herein, we disclose a copper-catalyzed atroposelective formal [4+1] annulation of 1,2-diketones with vinyl cations, enabling the efficient and atom-economical construction of axially chiral arylpyrroles bearing 1,3-dioxole moieties with good to excellent enantioselectivities under mild reaction conditions. Importantly, this methodology constitutes the first enantioselective formal [4+1] annulation of 1,2-diketones.
Collapse
Affiliation(s)
- Ze-Shu Wang
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hao-Jin Xu
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yang-Bo Chen
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Long-Wu Ye
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhou
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Peng-Cheng Qian
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
24
|
Li CT, Qi LJ, Liu LG, Ge C, Lu X, Ye LW, Zhou B. Asymmetric formal C-C bond insertion into aldehydes via copper-catalyzed diyne cyclization. Nat Commun 2023; 14:7058. [PMID: 37923708 PMCID: PMC10624849 DOI: 10.1038/s41467-023-42805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
The formal C-C bond insertion into aldehydes is an attractive methodology for the assembly of homologated carbonyl compounds. However, the homologation of aldehydes has been limited to diazo approach and the enantioselective reaction was rarely developed. Herein, we report an asymmetric formal C-C bond insertion into aldehydes through diyne cyclization strategy. In the presence of Cu(I)/SaBOX catalyst, this method leads to the efficient construction of versatile axially chiral naphthylpyrroles in moderate to excellent yields with good to excellent enantioselectivities. This protocol represents a rare example of asymmetric formal C-C bond insertion into aldehydes using non-diazo approach. The combined experimental and computational mechanistic studies reveal the reaction mechanism, origin of regioselectivity and stereoselectivity. Notably, the chiral phosphine ligand derived from synthesized axially chiral skeleton was proven to be applicable to asymmetric catalysis.
Collapse
Affiliation(s)
- Cui-Ting Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lin-Jun Qi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chang Ge
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
25
|
Yang L, Hou A, Jiang Q, Cheng M, Liu Y. Methodological Development and Applications of Tryptamine-Ynamide Cyclizations in Synthesizing Core Skeletons of Indole Alkaloids. J Org Chem 2023; 88:11377-11391. [PMID: 37540141 DOI: 10.1021/acs.joc.3c01088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Over the past two decades, synthetic strategies for synthesizing the skeletons of various indole alkaloids based on tryptamine-ynamide have been continuously developed and applied to the total syntheses or formal total syntheses of related molecules. In this synopsis, we summarized the cyclization pathways of tryptamine-ynamide under different catalytic conditions, emphasizing the reaction mechanism and applications in the syntheses of indole alkaloids.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Anbin Hou
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Qing Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
26
|
Yuan T, Radefeld K, Shan C, Wegner C, Nichols E, Ye X, Tang Q, Wojtas L, Shi X. Asymmetric Hydrative Aldol Reaction (HAR) via Vinyl-Gold Promoted Intermolecular Ynamide Addition to Aldehydes. Angew Chem Int Ed Engl 2023; 62:e202305810. [PMID: 37276357 PMCID: PMC10527335 DOI: 10.1002/anie.202305810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
Herein, we reported an intermolecular asymmetric hydrative aldol reaction through vinyl-gold intermediate under ambient conditions. This tandem alkyne hydration and sequential nucleophilic addition afforded a "base-free" approach to β-hydroxy amides with high efficiency (up to 95 % yields, >50 examples). Vinyl gold intermediate was applied as reactive nucleophile and Fe(acac)3 was used as the critical co-catalyst to prevent undesired protodeauration, allowing this transformation to proceed under mild conditions with good functional group tolerance and excellent stereoselectivity (>20 : 1 d.r. and up to 99 % ee).
Collapse
Affiliation(s)
- Teng Yuan
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Kelton Radefeld
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Carter Wegner
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Erin Nichols
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Xiaohan Ye
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Qi Tang
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| |
Collapse
|
27
|
Zhang ZX, Liu LG, Liu YX, Lin J, Lu X, Ye LW, Zhou B. Organocatalytic intramolecular (4 + 2) annulation of enals with ynamides: atroposelective synthesis of axially chiral 7-aryl indolines. Chem Sci 2023; 14:5918-5924. [PMID: 37293635 PMCID: PMC10246658 DOI: 10.1039/d3sc01880f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Catalytic enantioselective transformation of alkynes has become a powerful tool for the synthesis of axially chiral molecules. Most of these atroposelective reactions of alkynes rely on transition-metal catalysis, and the organocatalytic approaches are largely limited to special alkynes which act as the precursors of Michael acceptors. Herein, we disclose an organocatalytic atroposelective intramolecular (4 + 2) annulation of enals with ynamides. This method allows the efficient and highly atom-economical preparation of various axially chiral 7-aryl indolines in generally moderate to good yields with good to excellent enantioselectivities. Computational studies were carried out to elucidate the origins of regioselectivity and enantioselectivity. Furthermore, a chiral phosphine ligand derived from the synthesized axially chiral 7-aryl indoline was proven to be potentially applicable to asymmetric catalysis.
Collapse
Affiliation(s)
- Zhi-Xin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Li-Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yi-Xi Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
28
|
Zhou JJ, Meng YN, Liu LG, Liu YX, Xu Z, Lu X, Zhou B, Ye LW. Copper-catalyzed enantioselective diyne cyclization via C(sp 2)-O bond cleavage. Chem Sci 2023; 14:3493-3500. [PMID: 37006699 PMCID: PMC10055982 DOI: 10.1039/d2sc06152j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
The functionalization of etheric C-O bonds via C-O bond cleavage is an attractive strategy for the construction of C-C and C-X bonds in organic synthesis. However, these reactions mainly involve C(sp3)-O bond cleavage, and a catalyst-controlled highly enantioselective version is extremely challenging. Here, we report a copper-catalyzed asymmetric cascade cyclization via C(sp2)-O bond cleavage, allowing the divergent and atom-economic synthesis of a range of chromeno[3,4-c]pyrroles bearing a triaryl oxa-quaternary carbon stereocenter in high yields and enantioselectivities. Importantly, this protocol not only represents the first [1,2]-Stevens-type rearrangement via C(sp2)-O bond cleavage, but also constitutes the first example of [1,2]-aryl migration reactions via vinyl cations.
Collapse
Affiliation(s)
- Ji-Jia Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ya-Nan Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Li-Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yi-Xi Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University Xuzhou 221004 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
29
|
Chen Y, Yan YH, Zhu BH, Chen F, Li L, Qian PC. Copper-Catalyzed Tandem Cyclization/Direct C(sp 2)-H Annulation of Azide-Ynamides via α-Imino Copper Carbenes: Access to Azepino[2,3- b:4,5- b']diindoles. Org Lett 2023; 25:2063-2067. [PMID: 36939559 DOI: 10.1021/acs.orglett.3c00434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
A novel copper-catalyzed tandem cyclization/direct C(sp2)-H annulation of phenyl azide-ynamides via α-imino copper carbenes has been developed, which provides a concise and flexible approach for the construction of a range of valuable azepino[2,3-b:4,5-b']diindoles in mostly good to excellent yields with high chemoselectivities. This tandem reaction also exhibits a broad substrate scope, excellent functional group tolerance, simple operation, and mild reaction conditions.
Collapse
Affiliation(s)
- Yi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yao-Hong Yan
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bo-Han Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fan Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
30
|
Dutta S, Sahoo AK. Three Component syn-1,2-Arylmethylation of Internal Alkynes. Angew Chem Int Ed Engl 2023; 62:e202300610. [PMID: 36701082 DOI: 10.1002/anie.202300610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/27/2023]
Abstract
A Pd-catalyzed three-component syn-1,2-arylmethylation of internal alkynes (ynamides/yne-acetates/alkynes) is described. The readily available and bench stable coupling partners iodo-arenes, and methyl boronic acid are successfully used in this coupling strategy to access the methyl-containing tetra-substituted olefins; the scope is broad showing excellent functional-group tolerance. Notably, the transformation is regio- as well as stereoselective. The biologically relevant motifs (BRM) bearing iodo-arenes and ynamides are also used for the late-stage syn-1,2-arylmethylation of alkynes. Aryl-alkylation, aryl-trideuteriomethylation, alkynyl-methylation, and alkenyl-methylation of ynamides are also presented. The Me-substituted alkenes are further transformed into synthetically important β-amino-indenones and α-fluoro-α'-methyl ketones.
Collapse
Affiliation(s)
- Shubham Dutta
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
31
|
Shi CY, Han T, Hong FL, Ye LW, Sun Q, Teng MY. Construction of Spirolactams by Unexpected Oxidative Cyclization of Alkenyl Diynes via Copper Catalysis. Org Lett 2023; 25:1525-1529. [PMID: 36856278 DOI: 10.1021/acs.orglett.3c00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A copper-catalyzed oxidative cyclization of alkenyl N-propargyl ynamides is described. This protocol enables the practical synthesis of diverse spirocyclic γ-lactams bearing an exocyclic double bond with generally high Z/E selectivity in moderate to good yields. Importantly, this copper-catalyzed oxidative cyclization demonstrates a distinctive selectivity in comparison with the related gold catalysis.
Collapse
Affiliation(s)
- Chong-Yang Shi
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Tao Han
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Feng-Lin Hong
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long-Wu Ye
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.,Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ming-Yu Teng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
32
|
Liu X, Liu LG, Chen CM, Li X, Xu Z, Lu X, Zhou B, Ye LW. Copper-Catalyzed Enantioselective Doyle-Kirmse Reaction of Azide-Ynamides via α-Imino Copper Carbenes. Angew Chem Int Ed Engl 2023; 62:e202216923. [PMID: 36639865 DOI: 10.1002/anie.202216923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
[2,3]-Sigmatropic rearrangement reaction involving sulfonium ylide (Doyle-Kirmse reaction) generated from metal carbenes represents one of the powerful methods for the construction of C(sp3 )-S and C-C bonds. Although significant advances have been achieved, the asymmetric versions via the generation of sulfonium ylides from metal carbenes have been rarely reported to date, and they have so far been limited to diazo compounds as metal carbene precursors. Here, we describe a copper-catalyzed enantioselective Doyle-Kirmse reaction via azide-ynamide cyclization, leading to the practical and divergent assembly of an array of chiral [1,4]thiazino[3,2-b]indoles bearing a quaternary carbon stereocenter in generally moderate to excellent yields and excellent enantioselectivities. Importantly, this protocol represents a unique catalytic asymmetric Doyle-Kirmse reaction via a non-diazo approach and an unprecedented asymmetric [2,3]-sigmatropic rearrangement via α-imino metal carbenes.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Can-Ming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
33
|
Galibert-Guijarro A, Mouysset D, Mimoun L, Bertrand MP, Feray L. Ynamides in Radical Reactions: A Route to Original Persubstituted 2-Aminofurans. J Org Chem 2023; 88:2464-2473. [PMID: 36715251 DOI: 10.1021/acs.joc.2c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mn(OAc)3/Cu(OAc)2-mediated reaction between ynamides, derived from oxazolidone or 3-methylindole carboxylate, and cyclic α-dicarbonyl radicals led to the one-pot synthesis of 2-aminofurans. The transformation involves addition of the α-dicarbonyl radical to ynamide, oxidation to ketene-iminium, and polar cyclization steps to provide original persubstituted 2-aminofurans in good to excellent yields. This work represents the first radical route for the synthesis of furans from ynamides.
Collapse
Affiliation(s)
- Aurélien Galibert-Guijarro
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, UMR 7273, Equipe CMO, Campus Saint-Jérôme, 13013 Marseille, France
| | - Dominique Mouysset
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, UMR 7273, Equipe CMO, Campus Saint-Jérôme, 13013 Marseille, France
| | - Liliane Mimoun
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, UMR 7273, Equipe CMO, Campus Saint-Jérôme, 13013 Marseille, France
| | - Michèle P Bertrand
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, UMR 7273, Equipe CMO, Campus Saint-Jérôme, 13013 Marseille, France
| | - Laurence Feray
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, UMR 7273, Equipe CMO, Campus Saint-Jérôme, 13013 Marseille, France
| |
Collapse
|
34
|
Saxena A, Ghosh N. Sequential Cu(II)-Catalyzed Multicomponent C-N Coupling, Nucleophilic Addition, and Cyclization Cascade: A Diastereoselective Approach to Carboxamide-Embedded Hexahydrobenzofuran Core. J Org Chem 2023; 88:300-309. [PMID: 36571574 DOI: 10.1021/acs.joc.2c02320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cascade or domino reactions serve as a powerful technique for the synthesis of complex organic scaffolds in one pot. Herein, a Cu(II)-catalyzed and silica gel-assisted multicomponent reaction (MCR) between bromoalkyne-tethered cyclohexadienones, amides, and water for the construction of hexahydrobenzofuran-3-carboxamide is developed. The reaction proceeds via a C-N coupling reaction followed by hydrative cyclization of ynamide intermediates. Notably, good to excellent diastereoselectivity is complementary of this reaction.
Collapse
Affiliation(s)
- Anchal Saxena
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Nayan Ghosh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
35
|
Körner L, Ho LP, Puchta R, Stanger A, Tamm M. Dimorpholinoacetylene and Its Use for the Synthesis of Tetraaminocyclobutadiene Species. Chemistry 2022; 28:e202202737. [PMID: 36148808 PMCID: PMC9828195 DOI: 10.1002/chem.202202737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 01/12/2023]
Abstract
The new diaminoacetylene (DAA) dimorpholinoacetylene (3) was prepared from 1,1-dimorpholinoethene (1) by bromination to form the dibromoketene aminal 2, which upon lithiation afforded 3 through a Fritsch-Buttenberg-Wiechell rearrangement. Heating 3 at elevated temperatures resulted in a complete conversion into the dimer 1,1,2,4-tetramorpholino-1-buten-3-yne (4), which was used for the synthesis of four-membered cyclic bent allene (CBA) transition-metal complexes of the type [(CBA)MLn ] (5-7; MLn =AuCl, RhCl(COD), RhCl(CO)2 ; CBA=1,3,4,4-tetramorpholino-1,2-cyclobutadiene; COD=1,5-cyclooctadiene). The reaction of 3 with tetraethylammonium bromide gave 1,2,3,4-tetramorpholinocyclobutenylium bromide (8), which reacted with bromine to form 1,2,3,4-tetra(morpholino)cyclobutenediylium bis(tribromide) (9). Compound 9 represents the first fully characterized compound containing a tetraaminocyclobutadiene dication and displays a nearly planar C4 N4 core as shown by X-ray diffraction analysis. Detailed quantum chemical calculations were performed to assess the aromaticity of tetraaminocyclubutadiene dications by employing the Nucleus Independent Chemical Shift (NICS) method and current density analysis.
Collapse
Affiliation(s)
- Lukas Körner
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Luong Phong Ho
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Ralph Puchta
- Department Chemie und PharmazieFriedrich-Alexander Universität Erlangen-NürnbergEgerlandstr. 191058ErlangenGermany
| | - Amnon Stanger
- Schulich Department of Chemistry, TechnionHaifa32000Israel
| | - Matthias Tamm
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
36
|
Kanikarapu S, Gogoi MP, Dutta S, Sahoo AK. A 6- endo-dig Thiolative Cyclization of Yne-Ynamides: Access to Thiodihydropyridin-2-ones. Org Lett 2022; 24:8289-8294. [DOI: 10.1021/acs.orglett.2c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Suresh Kanikarapu
- School of Chemistry, University of Hyderabad, Hyderabad, India 500046
| | | | - Shubham Dutta
- School of Chemistry, University of Hyderabad, Hyderabad, India 500046
| | - Akhila K. Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, India 500046
| |
Collapse
|
37
|
Jiao L, Wang Y, Ding L, Zhang C, Wang XN, Chang J. Synthesis of 2-Aminopyrroles Via Metal-Free Annulation of Ynamides with 2 H-Azirines. J Org Chem 2022; 87:15564-15570. [DOI: 10.1021/acs.joc.2c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lianhong Jiao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yanan Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lixia Ding
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chaofeng Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Na Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Junbiao Chang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
38
|
Qi L, Li C, Huang Z, Jiang J, Zhu X, Lu X, Ye L. Enantioselective Copper‐Catalyzed Formal [2+1] and [4+1] Annulations of Diynes with Ketones via Carbonyl Ylides. Angew Chem Int Ed Engl 2022; 61:e202210637. [DOI: 10.1002/anie.202210637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Lin‐Jun Qi
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University Jiaojiang 318000 Zhejiang China
| | - Cui‐Ting Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zheng‐Qi Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jia‐Tian Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin‐Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
39
|
Formation and Intramolecular Capture of α-Imino Gold Carbenoids in the Au(I)-Catalyzed [3 + 2] Reaction of Anthranils, 1,2,4-Oxadiazoles, and 4,5-Dihydro-1,2,4-Oxadiazoles with Ynamides. Catalysts 2022. [DOI: 10.3390/catal12080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
α-Imino gold carbenoid species have been recognized as key intermediates in a plethora of processes involving gold-activated alkynes. Here, we explored the pathways of the Au(I)-catalyzed [3 + 2] reaction between the mild nucleophiles: anthranil, 1,2,4-oxadiazole, or 4,5-dihydro-1,2,4-oxadiazole, and an ynamide, PhC≡C-N(Ts)Me, proceeding via the formation of the aforementioned α-imino gold carbene intermediate which, after intramolecular capture, regioselectively produces 2-amino-3-phenyl-7-acyl indoles, N-acyl-5-aminoimidazoles, or N-alkyl-4-aminoimidazoles, respectively. In all cases, the regioselectivity of the substituents at 2, 3 in the 7-acyl-indole ring and 4, 5 in the substituted imidazole ring is decided at the first transition state, involving the attack of nitrogen on the C1 or C2 carbon of the activated ynamide. A subsequent and steep energy drop furnishes the key α-imino gold carbene. These features are more pronounced for anthranil and 4,5-dihydro-1,2,4-oxadiazole reactions. Strikingly, in the 4,5-dihydro-1,2,4-oxadiazole reaction the significant drop of energy is due to the formation of an unstable α-imino gold carbene, which after a spontaneous benzaldehyde elimination is converted to a stabilized one. Compared to anthranil, the reaction pathways for 1,2,4-oxadiazoles or 4,5-dihydro-1,2,4-oxadiazoles are found to be significantly more complex than anticipated in the original research. For instance, compared to the formation of a five-member ring from the α-imino gold carbene, one competitive route involves the formation of intermediates consisting of a four-member ring condensed with a three-member ring, which after a metathesis and ring expansion led to the imidazole ring.
Collapse
|
40
|
Qi LJ, Li CT, Huang ZQ, Jiang JT, Zhu XQ, Lu X, Ye LW. Enantioselective Copper‐Catalyzed Formal [2+1] and [4+1] Annulations of Diynes with Ketones via Carbonyl Ylides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lin-Jun Qi
- Xiamen University College of Chemistry and Chemical Engineering 361005 Xiamen CHINA
| | - Cui-Ting Li
- Xiamen University College of Chemistry and Chemical Engineering 361005 Xiamen CHINA
| | - Zheng-Qi Huang
- Xiamen University College of Chemistry and Chemical Engineering 361005 Xiamen CHINA
| | - Jia-Tian Jiang
- Xiamen University College of Chemistry and Chemical Engineering 361005 Xiamen CHINA
| | - Xin-Qi Zhu
- Xiamen University College of Chemistry and Chemical Engineering 361005 Xiamen CHINA
| | - Xin Lu
- Xiamen University College of Chemistry and Chemical Engineering 361005 Xiamen CHINA
| | - Long-Wu Ye
- Xiamen University College of Chemistry and Chemical Engineering Jiaxi Building-624 361005 Xiamen CHINA
| |
Collapse
|
41
|
Yadav B, Baire B. Ag(I)-Promoted, Diastereoselective Cyclo-isomerization of N-Alkynyl-7-azaindole-2-carbinols. Selective Synthesis of syn-1,2-Diarylpyrrolo[1,2- a]indol-3-ones and ( Z)-8-Benzylideneoxazolo[3',4'':1,5]pyrrolo[2,3- b]pyridines. Org Lett 2022; 24:5450-5455. [PMID: 35834489 DOI: 10.1021/acs.orglett.2c02179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design and development of an Ag(I)-promoted, highly diastereoselective cycloisomerization strategy for the synthesis of syn-1,2-diarylpyrrolo[1,2-a]indol-3-ones from N-alkynyl-indole-2-carbinols is reported. The H218O control experiment and identification of 18O-labeled product suggested the involvement of an external water. The 7-azaindole substrates showned a distinct reactivity to give the (Z)-8-benzylideneoxazolo[3',4':1,5]pyrrolo[2,3-b]pyridines. Key features of this strategy are its 100% atom economy, access to important heterocycles, diverse substrate scope, yields up to 95%, operationally simple procedure, and distinct reactivity of indole vs 7-azaindoles.
Collapse
Affiliation(s)
- Bhavna Yadav
- Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Beeraiah Baire
- Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
42
|
Wang Y, Hu M, Ding L, Wang Y, Wang XN, Chang J. [2 + 2] Cycloaddition of Ynamides to Construct 3-Aminocyclobutenones. Org Lett 2022; 24:5056-5061. [PMID: 35816096 DOI: 10.1021/acs.orglett.2c01825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient Tf2NH-catalyzed [2 + 2] cycloaddition of ynamides under mild conditions has been developed. Within short reaction times, various ynamides are transformed into the corresponding 3-aminocyclobutenones in good to excellent yields. This is the first example for the metal-free intermolecular [2 + 2] self-cycloaddition of ynamides. Meanwhile, the desired cycloaddition products can be easily transformed into aminonaphthol derivatives.
Collapse
Affiliation(s)
- Yanru Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Mengjun Hu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Lixia Ding
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yanan Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiao-Na Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Junbiao Chang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
43
|
Zhu G, Zhou J, Liu L, Li X, Zhu X, Lu X, Zhou J, Ye L. Catalyst‐Dependent Stereospecific [3,3]‐Sigmatropic Rearrangement of Sulfoxide‐Ynamides: Divergent Synthesis of Chiral Medium‐Sized
N
,
S
‐Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202204603. [DOI: 10.1002/anie.202204603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 01/20/2023]
Affiliation(s)
- Guang‐Yu Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ji‐Jia Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Li‐Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin‐Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jin‐Mei Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
44
|
Zhang ZX, Wang X, Jiang JT, Chen J, Zhu XQ, Ye LW. Brønsted acid-catalyzed asymmetric dearomatization of indolyl ynamides: practical and enantioselective synthesis of polycyclic indolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Lin J, Wu C, Tian X. Nickel-Catalyzed Cascade Reaction of 2-Vinylanilines with gem-Dichloroalkenes. Org Lett 2022; 24:4855-4859. [PMID: 35767682 DOI: 10.1021/acs.orglett.2c01492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient nickel-catalyzed cascade reaction of 2-vinylanilines with gem-dichloroalkenes has been developed to deliver diversely substituted quinolines in good to high yields. This protocol enables effective access to quinolines bearing various functional groups in the cascade process from readily available feedstock chemicals. Mechanistic studies suggest that two plausible pathways are involved in the IPr-nickel catalytic system.
Collapse
Affiliation(s)
- Jin Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Chaoyi Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xu Tian
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
46
|
Wang ZS, Zhu LJ, Li CT, Liu BY, Hong X, Ye LW. Synthesis of Axially Chiral N-Arylindoles via Atroposelective Cyclization of Ynamides Catalyzed by Chiral Brønsted Acids. Angew Chem Int Ed Engl 2022; 61:e202201436. [PMID: 35246909 DOI: 10.1002/anie.202201436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 01/25/2023]
Abstract
In recent years, asymmetric catalysis of ynamides has attracted much attention, but these reactions mostly constructed central chirality, except for a few examples on the synthesis of axially chiral compounds which exclusively relied on noble-metal catalysis. Herein, a facile access to axially chiral N-heterocycles enabled by chiral Brønsted acid-catalyzed 5-endo-dig cyclization of ynamides is disclosed, which represents the first metal-free protocol for the construction of axially chiral compounds from ynamides. This method allows the practical and atom-economical synthesis of valuable N-arylindoles in excellent yields with generally excellent enantioselectivities. Moreover, organocatalysts and ligands based on such axially chiral N-arylindole skeletons are demonstrated to be applicable to asymmetric catalysis.
Collapse
Affiliation(s)
- Ze-Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lu-Jing Zhu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Cui-Ting Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.,State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
47
|
Zhu G, Zhou J, Liu L, Li X, Zhu X, Lu X, Zhou J, Ye L. Catalyst‐Dependent Stereospecific [3,3]‐Sigmatropic Rearrangement of Sulfoxide‐Ynamides: Divergent Synthesis of Chiral Medium‐Sized
N
,
S
‐Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guang‐Yu Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ji‐Jia Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Li‐Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin‐Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jin‐Mei Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
48
|
Mutra MR, Wang JJ. Photoinduced ynamide structural reshuffling and functionalization. Nat Commun 2022; 13:2345. [PMID: 35487916 PMCID: PMC9055057 DOI: 10.1038/s41467-022-30001-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
The radical chemistry of ynamides has recently drawn the attention of synthetic organic chemists to the construction of various N-heterocyclic compounds. Nevertheless, the ynamide-radical chemistry remains a long-standing challenge for chemists due to its high reactivity, undesirable byproducts, severe inherent regio- and chemoselective problems. Importantly, the ynamide C(sp)-N bond fission remains an unsolved challenge. In this paper, we observe Photoinduced radical trigger regio- and chemoselective ynamide bond fission, structural reshuffling and functionalization of 2-alkynyl-ynamides to prepare synthetically inaccessible/challenging chalcogen-substituted indole derivatives with excellent step/atom economy. The key breakthroughs of this work includes, ynamide bond cleavage, divergent radical precursors, broad scope, easy to handle, larger-scale reactions, generation of multiple bonds (N-C(sp2), C(sp2)-C(sp2), C(sp2)-SO2R/C-SR, and C-I/C-Se/C-H) in a few minutes without photocatalysts, metals, oxidants, additives. Control experiments and 13C-labeling experiments supporting the conclusion that sulfone radicals contribute to ynamide structural reshuffling processes via a radical pathway. Although ynamides have emerged as a versatile class of compounds for organic synthesis, the radical chemistry of ynamides usually proceeds with the expected connectivity largely intact. Here the authors show a methodology by which the C(sp)–N bond undergoes scission, alkyne migration and functionalization under blue LED light in the absence of metals or additives.
Collapse
Affiliation(s)
- Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.
| |
Collapse
|
49
|
Wang H, Hu M, Wang XN, Chang J. Metal-free hydroalkoxylation of ynesulfonamides with alcohols. Org Biomol Chem 2022; 20:3408-3412. [PMID: 35380156 DOI: 10.1039/d2ob00420h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Efforts for developing a convenient and expeditious method for synthesizing alkoxy-substituted enamides via nucleophilic addition of alcohols to ynesulfonamides are described. This sequence is completely regioselective and highly stereoselective, and leads to the hydroalkoxylation products in high yields under mild reaction conditions.
Collapse
Affiliation(s)
- Hanhan Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Mengjun Hu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Xiao-Na Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Junbiao Chang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
50
|
Hansjacob P, Leroux FR, Gandon V, Donnard M. Palladium-Catalyzed Silylcyanation of Ynamides: Regio- and Stereoselective Access to Tetrasubstituted 3-Silyl-2-Aminoacrylonitriles. Angew Chem Int Ed Engl 2022; 61:e202200204. [PMID: 35060272 DOI: 10.1002/anie.202200204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 01/02/2023]
Abstract
The palladium-catalyzed silylcyanation of ynamides is described. This reaction is fully regioselective, delivering tetrasubstituted 2-aminoacrylonitriles derivatives exclusively. Unexpectedly, the nature (aryl or alkyl) of the substituent located at the β-position of the ynamide directly controls the stereoselectivity. The reaction tolerates a number of functional groups and can be considered as the first general access to fully substituted 2-aminoacrylonitriles. Given the singular reactivity observed, a computational study was performed to shed light on the mechanism of this intriguing transformation. Relying on the specific reactivity of the newly installed vinylsilane functionality, the scope of 2-aminoacrylonitriles has been enlarged by postfunctionalization.
Collapse
Affiliation(s)
- Pierre Hansjacob
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Frédéric R Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405, Orsay cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France
| | - Morgan Donnard
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| |
Collapse
|