1
|
He Z, Yang J, Liu L. Design of Supported Metal Catalysts and Systems for Propane Dehydrogenation. JACS AU 2024; 4:4084-4109. [PMID: 39610729 PMCID: PMC11600159 DOI: 10.1021/jacsau.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Propane dehydrogenation (PDH) is currently an approach for the production of propylene with high industrial importance, especially in the context of the shale gas revolution and the growing global demands for propylene and downstream commodity chemicals. In this Perspective article, we comprehensively summarize the recent advances in the design of advanced catalysts for PDH and the new understanding of the structure-performance relationship in supported metal catalysts. Furthermore, we discuss the gaps between fundamental research and practical industrial applications in the catalyst developments for the PDH process. In particular, we overview some critical issues regarding catalyst regeneration and the compatibility of the catalyst and reactor design. Finally, we make perspectives on the future directions of PDH research, including the efforts toward achieving a unified understanding of the structure-performance relationship, innovation in reactor engineering, and translation of the knowledge accumulated on PDH studies to other important alkane dehydrogenation reactions.
Collapse
Affiliation(s)
- Zhe He
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingnan Yang
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lichen Liu
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Yuan Y, Zhao Z, Lobo RF, Xu B. Site Diversity and Mechanism of Metal-Exchanged Zeolite Catalyzed Non-Oxidative Propane Dehydrogenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207756. [PMID: 36897033 PMCID: PMC10161086 DOI: 10.1002/advs.202207756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Metal-exchanged zeolites are well-known propane dehydrogenation (PDH) catalysts; however, the structure of the active species remains unresolved. In this review, existing PDH catalysts are first surveyed, and then the current understanding of metal-exchanged zeolite catalysts is described in detail. The case of Ga/H-ZSM-5 is employed to showcase that advances in the understanding of structure-activity relations are often accompanied by technological or conceptional breakthroughs. The understanding of Ga speciation at PDH conditions has evolved owing to the advent of in situ/operando characterizations and to the realization that the local coordination environment of Ga species afforded by the zeolite support has a decisive impact on the active site structure. In situ/operando quantitative characterization of catalysts, rigorous determination of intrinsic reaction rates, and predictive computational modeling are all significant in identifying the most active structure in these complex systems. The reaction mechanism could be both intricately related to and nearly independent of the details of the assumed active structure, as in the two main proposed PDH mechanisms on Ga/H-ZSM-5, that is, the carbenium mechanism and the alkyl mechanism. Perspectives on potential approaches to further elucidate the active structure of metal-exchanged zeolite catalysts and reaction mechanisms are discussed in the final section.
Collapse
Affiliation(s)
- Yong Yuan
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
| | - Zhaoqi Zhao
- College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Raul F. Lobo
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
| | - Bingjun Xu
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
- College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
3
|
Yuan Y, Lobo RF. Zinc Speciation and Propane Dehydrogenation in Zn/H-ZSM-5 Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Van J, Chen G, Xiang Y. Dual-Bed Plasma/Catalytic Synergy for Methane Transformation into Aromatics. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jefferson Van
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Genwei Chen
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Yizhi Xiang
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi39762, United States
| |
Collapse
|
5
|
Increased Light Olefin Production by Sequential Dehydrogenation and Cracking Reactions. Catalysts 2022. [DOI: 10.3390/catal12111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this study, a sequential reaction using selected metal oxides, followed by ZSM-5-based catalysts, was employed to demonstrate a promising route for enhancing light olefin production in the catalytic cracking of naphtha. The rationale for the reaction is based on the induction of alkenes into hydrocarbon feeds prior to cracking. The optimum olefin induction was achieved by carefully optimizing the dehydrogenation active sites Mo/Al2O3 catalyst. The formed alkenes have a lower activation energy for C-H/C-C bond breaking compared to alkanes. This could accelerate the formation of carbenium ions, thus promoting the conversion of n-octane to produce light olefins. Detailed product distribution and DFT calculation indicated a remarkable increase in ethylene and propylene production in the final product through a modified reaction pathway. Compared with the common metal-promoted zeolite catalysts, the new route could avoid the block of zeolite channels and corresponding decreased catalytic cracking activity. The feasibility of the proposed route was confirmed with different ratios of dehydrogenation catalyst to the reactant. The highest yields of ethylene and propylene reached 13.22% and 33.12% with ratios of Mo/Al2O3 and ZSM-5-based catalyst to n-octane both 10:1 at 600 °C. Stability tests showed that the catalytic activity of the double-bed system was stable over 10 cycles.
Collapse
|
6
|
Nozik D, Bell AT. Role of Ga 3+ Sites in Ethene Oligomerization over Ga/H-MFI. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Danna Nozik
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Alexis T. Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Farberow CA, Wegener EC, Kumar A, Miller JH, Dupuis DP, Kim S, Ruddy DA. Connecting cation site location to alkane dehydrogenation activity in Ni/BEA catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Zhang T, Pei C, Sun G, Chen S, Zhao Z, Sun S, Lu Z, Xu Y, Gong J. Synergistic Mechanism of Platinum‐GaO
x
Catalysts for Propane Dehydrogenation. Angew Chem Int Ed Engl 2022; 61:e202201453. [DOI: 10.1002/anie.202201453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Tingting Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Guodong Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou, 350207 China
| | - Zhi‐Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Shijia Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Zhenpu Lu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Yiyi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou, 350207 China
| |
Collapse
|
9
|
Synergistic Mechanism of Platinum‐GaO
x
Catalysts for Propane Dehydrogenation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Yuan Y, Lee JS, Lobo RF. Ga +-Chabazite Zeolite: A Highly Selective Catalyst for Nonoxidative Propane Dehydrogenation. J Am Chem Soc 2022; 144:15079-15092. [PMID: 35793461 DOI: 10.1021/jacs.2c03941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ga-chabazite zeolites (Ga-CHA) have been found to efficiently catalyze propane dehydrogenation with high propylene selectivity (96%). In situ Fourier transform infrared spectroscopy and pulse titrations are employed to determine that upon reduction, surface Ga2O3 is reduced and diffuses into the zeolite pores, displacing the Brønsted acid sites and forming extra-framework Ga+ sites. This isolated Ga+ site reacts reversibly with H2 to form GaHx (2034 cm-1) with an enthalpy of formation of ∼-51.2 kJ·mol-1, a result supported by density functional theory calculations. The initial C3H8 dehydrogenation rates decrease rapidly (40%) during the first 100 min and then decline slowly afterward, while the C3H6 selectivity is stable at ∼96%. The reduction in the reaction rate is correlated with the formation of polycyclic aromatics inside the zeolite (using UV-vis spectroscopy) indicating that the accumulation of polycyclic aromatics is the main cause of the deactivation. The carbon species formed can be easily oxidized at 600 °C with complete recovery of the PDH catalytic properties. The correlations between GaHx vs Ga/Al ratio and PDH rates vs Ga/Al ratio show that extra-framework Ga+ is the active center catalyzing propane dehydrogenation. The higher reaction rate on Ga+ than In+ in CHA zeolites, by a factor of 43, is the result of differences in the stabilization of the transition state due to the higher stability of Ga3+ vs In3+. The uniformity of the Ga+ sites in this material makes it an excellent model for the molecular understanding of metal cation-exchanged hydrocarbon interactions in zeolites.
Collapse
Affiliation(s)
- Yong Yuan
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jason S Lee
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Raul F Lobo
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
11
|
Huang M, Maeno Z, Toyao T, Shimizu KI. Ga speciation and ethane dehydrogenation catalysis of Ga-CHA and MOR: Comparative investigation with Ga-MFI. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Ni L, Khare R, Bermejo-Deval R, Zhao R, Tao L, Liu Y, Lercher JA. Highly Active and Selective Sites for Propane Dehydrogenation in Zeolite Ga-BEA. J Am Chem Soc 2022; 144:12347-12356. [PMID: 35771043 DOI: 10.1021/jacs.2c03810] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly selective Ga-modified zeolite BEA for propane dehydrogenation has been synthesized by grafting Ga on Zn-BEA followed by removal of Zn in the presence of H2. A propene selectivity of 82% at 19% propane conversion illustrates the high selectivity at 813 K. The kinetic model of the catalyzed dehydrogenation including the elementary steps of propane adsorption, first and second C-H bond cleavage, and propene and H2 desorption demonstrates that the propane dehydrogenation rate is determined by the first C-H bond cleavage at low pC3H8, while at high pC3H8, the rate is limited by the desorption of H2. The active sites have been identified as dehydrated and tetrahedrally coordinated Ga3+ in the *BEA lattice. The low selectivity toward aromatics is concluded to be associated with the high Lewis acid strength of lattice Ga3+ and the low Brønsted acid strength of the hydrated Ga sites.
Collapse
Affiliation(s)
- Lingli Ni
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany
| | - Ricardo Bermejo-Deval
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany
| | - Ruixue Zhao
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany
| | - Lei Tao
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85747, Germany.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
13
|
Acetonitrile formation from ethane or ethylene through anaerobic ammodehydrogenation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Hu ZP, Han J, Wei Y, Liu Z. Dynamic Evolution of Zeolite Framework and Metal-Zeolite Interface. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhong-Pan Hu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jingfeng Han
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
15
|
Yuan Y, Lobo RF. Propane dehydrogenation over extra-framework In(i) in chabazite zeolites. Chem Sci 2022; 13:2954-2964. [PMID: 35382476 PMCID: PMC8905846 DOI: 10.1039/d1sc05866e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022] Open
Abstract
Indium on silica, alumina and zeolite chabazite (CHA), with a range of In/Al ratios and Si/Al ratios, have been investigated to understand the effect of the support on indium speciation and its corresponding influence on propane dehydrogenation (PDH). It is found that In2O3 is formed on the external surface of the zeolite crystal after the addition of In(NO3)3 to H-CHA by incipient wetness impregnation and calcination. Upon reduction in H2 gas (550 °C), indium displaces the proton in Brønsted acid sites (BASs), forming extra-framework In+ species (In-CHA). A stoichiometric ratio of 1.5 of formed H2O to consumed H2 during H2 pulsed reduction experiments confirms the indium oxidation state of +1. The reduced indium is different from the indium species observed on samples of 10In/SiO2, 10In/Al2O3 (i.e., 10 wt% indium) and bulk In2O3, in which In2O3 was reduced to In(0), as determined from the X-ray diffraction patterns of the product, H2 temperature-programmed reduction (H2-TPR) profiles, pulse reactor investigations and in situ transmission FTIR spectroscopy. The BASs in H-CHA facilitate the formation and stabilization of In+ cations in extra-framework positions, and prevent the deep reduction of In2O3 to In(0). In+ cations in the CHA zeolite can be oxidized with O2 to form indium oxide species and can be reduced again with H2 quantitatively. At comparable conversion, In-CHA shows better stability and C3H6 selectivity (∼85%) than In2O3, 10In/SiO2 and 10In/Al2O3, consistent with a low C3H8 dehydrogenation activation energy (94.3 kJ mol-1) and high C3H8 cracking activation energy (206 kJ mol-1) in the In-CHA catalyst. A high Si/Al ratio in CHA seems beneficial for PDH by decreasing the fraction of CHA cages containing multiple In+ cations. Other small-pore zeolite-stabilized metal cation sites could form highly stable and selective catalysts for this and facilitate other alkane dehydrogenation reactions.
Collapse
Affiliation(s)
- Yong Yuan
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
| | - Raul F Lobo
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
| |
Collapse
|
16
|
Qu Z, Sun Q. Advances in Zeolite-Supported Metal Catalysts for Propane Dehydrogenation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00653g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propylene is one of the building blocks of the modern industrial mansion, which is the feeding stock for polypropylene, acrylonitrile, and other important chemicals. Propane dehydrogenation (PDH) is one of...
Collapse
|
17
|
Huang M, Yasumura S, Li L, Toyao T, Maeno Z, Shimizu KI. High-loading Ga-exchanged MFI zeolites as selective and coke-resistant catalysts for nonoxidative ethane dehydrogenation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01799c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A high-loading Ga-exchanged MFI zeolite was developed for efficient ethane dehydrogenation. Its high catalytic performance is ascribed to both the low amount of Brønsted acid sites and the major formation of [GaH2]+ ions among isolated Ga hydrides.
Collapse
Affiliation(s)
- Mengwen Huang
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Lingcong Li
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
18
|
Sun Q, Wang N, Yu J. Advances in Catalytic Applications of Zeolite-Supported Metal Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104442. [PMID: 34611941 DOI: 10.1002/adma.202104442] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Zeolites possessing large specific surface areas, ordered micropores, and adjustable acidity/basicity have emerged as ideal supports to immobilize metal species with small sizes and high dispersities. In recent years, the zeolite-supported metal catalysts have been widely used in diverse catalytic processes, showing excellent activity, superior thermal/hydrothermal stability, and unique shape-selectivity. In this review, a comprehensive summary of the state-of-the-art achievements in catalytic applications of zeolite-supported metal catalysts are presented for important heterogeneous catalytic processes in the last five years, mainly including 1) the hydrogenation reactions (e.g., CO/CO2 hydrogenation, hydrogenation of unsaturated compounds, and hydrogenation of nitrogenous compounds); 2) dehydrogenation reactions (e.g., alkane dehydrogenation and dehydrogenation of chemical hydrogen storage materials); 3) oxidation reactions (e.g., CO oxidation, methane oxidation, and alkene epoxidation); and 4) other reactions (e.g., hydroisomerization reaction and selective catalytic reduction of NOx with ammonia reaction). Finally, some current limitations and future perspectives on the challenge and opportunity for this subject are pointed out. It is believed that this review will inspire more innovative research on the synthesis and catalysis of zeolite-supported metal catalysts and promote their future developments to meet the emerging demands for practical applications.
Collapse
Affiliation(s)
- Qiming Sun
- Innovation Center for Chemical Sciences|College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ning Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Jihong Yu
- Innovation Center for Chemical Sciences|College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
19
|
Challenges for the theoretical description of the mechanism and kinetics of reactions catalyzed by zeolites. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Nozik D, Tinga FMP, Bell AT. Propane Dehydrogenation and Cracking over Zn/H-MFI Prepared by Solid-State Ion Exchange of ZnCl 2. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Danna Nozik
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Francesca Mikaela P. Tinga
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Alexis T. Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Xu Y, Yu W, Zhang H, Xin J, He X, Liu B, Jiang F, Liu X. Suppressing C–C Bond Dissociation for Efficient Ethane Dehydrogenation over the Isolated Co(II) Sites in SAPO-34. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Wenda Yu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Hao Zhang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Jian Xin
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Xiaohui He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Feng Jiang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| |
Collapse
|
22
|
Understanding the Catalytic Activity of Microporous and Mesoporous Zeolites in Cracking by Experiments and Simulations. Catalysts 2021. [DOI: 10.3390/catal11091114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Porous zeolite catalysts have been widely used in the industry for the conversion of fuel-range molecules for decades. They have the advantages of higher surface area, better hydrothermal stability, and superior shape selectivity, which make them ideal catalysts for hydrocarbon cracking in the petrochemical industry. However, the catalytic activity and selectivity of zeolites for hydrocarbon cracking are significantly affected by the zeolite topology and composition. The aim of this review is to survey recent investigations on hydrocarbon cracking and secondary reactions in micro- and mesoporous zeolites, with the emphasis on the studies of the effects of different porous environments and active site structures on alkane adsorption and activation at the molecular level. The pros and cons of different computational methods used for zeolite simulations are also discussed in this review.
Collapse
|
23
|
Chen G, Liang T, Yoo P, Fadaeerayeni S, Sarnello E, Li T, Liao P, Xiang Y. Catalytic Light Alkanes Conversion through Anaerobic Ammodehydrogenation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Genwei Chen
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Tingyu Liang
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Pilsun Yoo
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Siavash Fadaeerayeni
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Erik Sarnello
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Peilin Liao
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Yizhi Xiang
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| |
Collapse
|
24
|
Li T, Shoinkhorova T, Gascon J, Ruiz-Martínez J. Aromatics Production via Methanol-Mediated Transformation Routes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01422] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Teng Li
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Tuiana Shoinkhorova
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Javier Ruiz-Martínez
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|