1
|
Liu B, Chen X, Yang Y, Alizadeh Kiapi MR, Menon D, Zhao Q, Yuan G, Keenan LL, Fairen-Jimenez D, Xia Q. Engineering Bodipy-Based Metal-Organic Frameworks for Efficient Full-Spectrum Photocatalysis in Amide Synthesis. Angew Chem Int Ed Engl 2025:e202505405. [PMID: 40192658 DOI: 10.1002/anie.202505405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Developing photocatalysts that can efficiently utilize the full solar spectrum is a crucial step toward transforming sustainable energy solutions. Due to their light absorption limitations, most photo-responsive metal-organic frameworks (MOFs) are constrained to the ultraviolet (UV) and blue light regions. Expanding their absorption to encompass the entire solar spectrum would unlock their full potential, greatly enhancing efficiency and applicability. Here, we report the design and synthesis of a series of highly stable boron-dipyrromethene (bodipy)-based MOFs (BMOFs) by reacting dicarboxyl-functionalized bodipy ligands with Zr-oxo clusters. Leveraging the acidity of the methyl groups on the bodipy backbone, we expanded the conjugation system through a solid-state condensation reaction with various aldehydes, achieving full-color absorption, thereby extending the band edge into the near-infrared (NIR) and infrared (IR) regions. These BMOFs demonstrated exceptional reactivity and recyclability in heterogeneous photocatalytic activities, including C─H bond activation of saturated aza-heterocycles and C─N bond cleavage of N,N-dimethylanilines to produce amides under visible light. Our findings highlight the transformative potential of BMOFs in photocatalysis, marking a significant leap forward in the design of advanced photocatalytic materials with tunable properties.
Collapse
Affiliation(s)
- Binhui Liu
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xu Chen
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Yuhao Yang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mohammad Reza Alizadeh Kiapi
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Dhruv Menon
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Qianyi Zhao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, China
| | - Luke L Keenan
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - David Fairen-Jimenez
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Qingchun Xia
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
2
|
Shi J, Peng SQ, Kuang B, Wang S, Liu Y, Zhou JX, Li X, Huang MH. Porous Polypyrrolidines for Highly Efficient Recovery of Precious Metals through Reductive Adsorption Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405731. [PMID: 38857110 DOI: 10.1002/adma.202405731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recycling and utilization of precious metals have emerged as a critical research focus in advancing the development of the circular economy. Among numerous methods for recovering precious metals such as gold, adsorbents with both high adsorption selectivity and capacity have become key technologies. This article incorporated the N-phenylpyrrolidine into a flexible porous polynorbornene backbone to create a class of distinctive porous organic polymers, named BIT-POP-14-BIT-POP-17. Through a reductive capture mechanism, the reductive adsorption sites of N-phenylpyrrolidine coordinate selectively with precious metals, the reduced metal is captured by the hierarchically porous polymers with flexible backbone. This approach leads to remarkable gold recovery efficiency, achieving a record of 2321 mg g-1 at ambient conditions, and 3020 mg g-1 under UV light, surpassing the theoretical limit. The porous polymers are filled in a column for a continuous uptake of gold from waste printed circuit boards (PCBs), showing recovery efficiency toward gold as high as 95% after 84 h. Overall, this work offers a new perspective on designing novel adsorbents for precious metal recovery, providing inspiration for researchers to explore novel adsorption modes and contribute to the advancement of the circular economy.
Collapse
Affiliation(s)
- Jing Shi
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Shan-Qing Peng
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Boya Kuang
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Shuifeng Wang
- Analytical and Testing Center, Beijing Normal University, No. 19 Xinjiegouwai Street, Haidian District, Beijing, 100875, China
| | - Yan Liu
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Jin-Xiu Zhou
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Xiaodong Li
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Mu-Hua Huang
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
3
|
Zhang W, Ren J, Wang D, Sun TY, Xia XF. Selective Reduction of Triple Bond via Proton-Coupled Electron Transfer for the Synthesis of α, β-Unsaturated γ-Lactams. Org Lett 2024; 26:3982-3986. [PMID: 38690829 DOI: 10.1021/acs.orglett.4c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Described herein is the development of a visible-light-induced photoredox 1,6-enyne reductive cyclization via selective reduction of a triple bond instead of an activated double bond. The selective 1,6-enyne radical cyclization/carbon═carbon double bond cleavage provided a straightforward route to structurally valuable α,β-unsaturated γ-lactams. TEMPO-trap experiments, control experiments, and DFT calculations have offered evidence supporting the possible catalytic cycle.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Juan Ren
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tian-Yu Sun
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
5
|
Dutta S, Kim JH, Bhatt K, Rickertsen DRL, Abboud KA, Ghiviriga I, Seidel D. Alicyclic-Amine-Derived Imine-BF 3 Complexes: Easy-to-Make Building Blocks for the Synthesis of Valuable α-Functionalized Azacycles. Angew Chem Int Ed Engl 2024; 63:e202313247. [PMID: 37909921 PMCID: PMC10835740 DOI: 10.1002/anie.202313247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
A new strategy to access α-functionalized alicyclic amines via their corresponding imine-BF3 complexes is reported. Isolable imine-BF3 complexes, readily prepared via dehydrohalogenation of N-bromoamines in a base-promoted/18-crown-6 catalyzed process followed by addition of boron trifluoride etherate, undergo reactions with a wide range of organometallic nucleophiles to afford α-functionalized azacycles. Organozinc and organomagnesium nucleophiles add at ambient temperatures, obviating the need for cryogenic conditions. In situ preparation of imine-BF3 complexes provides access to α-functionalized morpholines and piperazines directly from their parent amines in a single operation. α-Functionalized morpholines can be elaborated further, for instance by installing a second substituent in the α'-position.
Collapse
Affiliation(s)
- Subhradeep Dutta
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Jae Hyun Kim
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kamal Bhatt
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Dillon R L Rickertsen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Khalil A Abboud
- Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Xie S, Ma L, Xiao TF, Zhang J, Kong J, Kuang Z, Zhou M, Xu GQ, Li Y, Xia A. Exploring Solvent Polarity-Dependent Photocatalysis Mechanism of Organic Photoredox Catalysts. J Phys Chem B 2023; 127:9813-9821. [PMID: 37968938 DOI: 10.1021/acs.jpcb.3c05879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Organic dyads with intramolecular charge-transfer (ICT) character are emerging as viable and more sustainable photocatalysts than metal-based complexes. Herein, a carbazole- and naphthalimide-based organic dyad (Cz-NI) was designed as an efficient organic photocatalyst for the direct C(sp3)-H carbamoylation of saturated aza-heterocycles. Aiming at understanding the effect of environment, especially the solvent polarity on photocatalysis performance, the excited-state dynamics of Cz-NI in different polar solvents were studied by femtosecond (fs) and nanosecond (ns) time-resolved transient absorption (TA) spectroscopy. Fs-TA measurements indicate that the formation of an intramolecular charge separation (ICS) state with twisted structural feature in polar solvents is driven and stabilized by solvation dynamics. Combined with chemical calculations, we found that orbital decoupling, poor conjugation between Cz and NI groups due to intramolecular torsional motion and transition moments associated with ICT emission, limits excited-state deactivation through radiation and nonradiation transition to the ground state. In addition, the orthogonal π-system of the ICS state enables the efficient spin-orbit, charge-transfer intersystem crossing to a triplet state, which is localized on the NI group. Spectroscopic and computational results reveal the formation of an ICS state at an appropriate energy that enables the population of the triplet state with high quantum yield, and the localized triplet state has long lifetime and high reduction potential for subsequent reactions. Therefore, solvent-solute interaction, especially the solvation-coupled excited-state structural relaxation, is the main factor that the photocatalysis efficiency of Cz-NI has a significant polarity correlation.
Collapse
Affiliation(s)
- Siyu Xie
- School of Science, State Key Laboratory of Information Photonic and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Lin Ma
- School of Science, State Key Laboratory of Information Photonic and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiawen Zhang
- School of Science, State Key Laboratory of Information Photonic and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Zhuoran Kuang
- School of Science, State Key Laboratory of Information Photonic and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yang Li
- School of Science, State Key Laboratory of Information Photonic and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Andong Xia
- School of Science, State Key Laboratory of Information Photonic and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| |
Collapse
|
7
|
Zhang YF, Chen HN, Xiao Y, Cui Z, Wang WD, Xu GQ. Organic photoredox catalyzed C(sp 3)-H functionalization of saturated aza-heterocycles via a cross-dehydrogenative coupling reaction. Org Biomol Chem 2023; 21:8284-8288. [PMID: 37814526 DOI: 10.1039/d3ob01438j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Herein we present a novel protocol to access α-functionalized saturated aza-heterocycles, and a variety of nucleophilic groups, such as indole, naphthol, phenol, pyrrole, furyl, nitromethyl, and cyano, could be easily installed into saturated aza-heterocycles. Furthermore, a range of biologically valuable 3,3'-diindolylmethane derivatives could also be readily accessed under mild photocatalytic conditions.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Han-Nan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Yi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Zhencun Cui
- Department of Nuclear Medicine, MOE Frontiers Science Center for Rare Isotopes, Second Hospital of Lanzhou University, Lanzhou University, Lanzhou 730030, P.R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China.
| |
Collapse
|
8
|
Sun B, Li PX, Jiang Y, Yang LL, Huang PY, Shen RP, Chen MJ, Wang JY, Jin C. Visible-Light-Induced Desaturative β-Alkoxyoxalylation of N-Aryl Cyclic Amines with Difluoromethyl Bromides and H 2O Via a Triple Cleavage Process. Org Lett 2023; 25:6773-6778. [PMID: 37655856 DOI: 10.1021/acs.orglett.3c02770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A visible-light-driven desaturative β-alkoxyoxalyation of N-aryl cyclic amines with difluoromethyl bromides and H2O has been reported. This tandem reaction is triggered by homolysis of the C-Br bond to produce the difuoroalkyl radical, which undergoes the subsequent defluorinated β-alkoxyoxalylation cascades to afford a wide range of β-ketoester/ketoamides substituted enamines. The prominent feature of this reaction contains photocatalyst-free, transition-metal free, and mild conditions. The 18O labeling experiment disclosed that H2O is the oxygen source of the carbonyl unit.
Collapse
Affiliation(s)
- Bin Sun
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pei-Xuan Li
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu Jiang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lu-Lu Yang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pan-Yi Huang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Run-Pu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, P. R. China
| | - Mao-Jie Chen
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jia-Yang Wang
- School of Life Sciences, Huzhou University, Huzhou 313002, Zhejiang, P. R. China
| | - Can Jin
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
9
|
Dutta S, Bhatt K, Cuffel F, Seidel D. Synthesis of Polycyclic Imidazoles via α-C-H/N-H Annulation of Alicyclic Amines. SYNTHESIS-STUTTGART 2023; 55:2343-2352. [PMID: 38314182 PMCID: PMC10836336 DOI: 10.1055/a-2022-1511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Secondary alicyclic amines are converted to their corresponding ring-fused imidazoles in a simple procedure consisting of oxidative imine formation followed by a van Leusen reaction. Amines with an existing α-substituent undergo regioselective ring-fusion at the α'-position. This method was utilized in a synthesis of fadrozole.
Collapse
Affiliation(s)
- Subhradeep Dutta
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kamal Bhatt
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Fabian Cuffel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Roy S, Panja S, Sahoo SR, Chatterjee S, Maiti D. Enroute sustainability: metal free C-H bond functionalisation. Chem Soc Rev 2023; 52:2391-2479. [PMID: 36924227 DOI: 10.1039/d0cs01466d] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The term "C-H functionalisation" incorporates C-H activation followed by its transformation. In a single line, this can be defined as the conversion of carbon-hydrogen bonds into carbon-carbon or carbon-heteroatom bonds. The catalytic functionalisation of C-H bonds using transition metals has emerged as an atom-economical technique to engender new bonds without activated precursors which can be considered as a major drawback while attempting large-scale synthesis. Replacing the transition-metal-catalysed approach with a metal-free strategy significantly offers an alternative route that is not only inexpensive but also environmentally benign to functionalize C-H bonds. Recently metal free synthetic approaches have been flourishing to functionalize C-H bonds, motivated by the search for greener, cost-effective, and non-toxic catalysts. In this review, we will highlight the comprehensive and up-to-date discussion on recent examples of ground-breaking research on green and sustainable metal-free C-H bond functionalisation.
Collapse
Affiliation(s)
- Sayan Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sagnik Chatterjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
11
|
Russo C, Brunelli F, Cesare Tron G, Giustiniano M. Isocyanide-Based Multicomponent Reactions Promoted by Visible Light Photoredox Catalysis. Chemistry 2023; 29:e202203150. [PMID: 36458647 DOI: 10.1002/chem.202203150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Isocyanide-based multicomponent reactions claim a one century-old history of flourishing developments. On the other hand, the enormous impact of recent progresses in visible light photocatalysis has boosted the identification of new straightforward and green approaches to both new and known chemical entities. In this context, the application of visible light photocatalytic conditions to multicomponent processes has been promoting key stimulating advancements. Spanning from radical-polar crossover pathways, to photoinduced and self-catalyzed transformations, to reactions involving the generation of imidoyl radical species, the present literature analysis would provide a general and critical overview about the potentialities and challenges of exploiting isocyanides in visible light photocatalytic multicomponent reactions.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Francesca Brunelli
- Department of Drug Science, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Gian Cesare Tron
- Department of Drug Science, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
12
|
Yamamoto Y, Chen Q, Ogawa A. Diphenyl Diselenide-Assisted Radical Addition Reaction of Diphenyl Disulfide to Unsaturated Bonds upon Photoirradiation. Molecules 2023; 28:molecules28062450. [PMID: 36985420 PMCID: PMC10059204 DOI: 10.3390/molecules28062450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
The addition reaction of interelement compounds with heteroatom–heteroatom single bonds to unsaturated bonds under photoirradiation is an important method for the efficient and atom-economical construction of carbon–heteroatom bonds. However, in practice, the desired addition reaction is sometimes unable to proceed as expected due to the low efficiency of the desired addition reactions or the preferential polymerization of unsaturated compounds. In this study, by combining an interelement compound with homologous heteroatom compounds as a catalyst, we succeeded in suppressing the polymerization of the unsaturated compounds and in attaining a highly selective carbon–heteroatom bond formation through the desired addition reaction. In this paper, we have examined in detail whether such a “catalytic radical reaction” proceeds for unsaturated compounds and found that the dithiolation of some unsaturated compounds (i.e., vinylic ethers, styrenes, and isocyanides) could proceed with the assistance of (PhSe)2 under light. The developed methods in this study are expected to have strong implications in the fields of radical chemistry, heteroatom chemistry, synthetic organic chemistry, and catalyst chemistry as atom-economical methods for carbon–heteroatom bond formation.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Qiqi Chen
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
- Correspondence:
| |
Collapse
|
13
|
Liu C, Chen HN, Xiao TF, Hu XQ, Xu PF, Xu GQ. Organic photoredox catalyzed dealkylation/acylation of tertiary amines to access amides. Chem Commun (Camb) 2023; 59:2003-2006. [PMID: 36723060 DOI: 10.1039/d2cc05842a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A mild metal-free C-N bond activation strategy for the direct conversion of inert tertiary amines with acyl chlorides into tertiary amides via organic photoredox catalysis is presented. In this protocol, a novel organic photocatalyst (Cz-NI-Ph) that showed excellent catalytic performance during C-N bond cleavage is developed. Moreover, this reaction features green and mild conditions, broad substrate scope, and readily available raw materials.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Han-Nan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
14
|
Zhao TT, Qin HN, Xu PF. Light-Promoted Nickel-Catalyzed C-O/C-N Coupling of Aryl Halides with Carboxylic Acids and Sulfonamides. Org Lett 2023; 25:636-641. [PMID: 36668813 DOI: 10.1021/acs.orglett.2c04210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A general strategy for the construction of dual-functional carbon-heteroatom bonds has been developed via a light-promoted nickel catalytic system. Employing a simple NiBr2 as the catalyst without any exogeneous ligands and photosensitizers, a variety of esters and sulfonamide N-arylation derivatives, including celecoxib- and glimepiride-derived sulfonamides, were readily accessed with high functional group tolerance and high efficiency. Moreover, the UV-vis absorption spectrum and free radical trapping experiments aimed at revealing the mechanism of the reaction are also presented.
Collapse
Affiliation(s)
- Tian-Tian Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hao-Ni Qin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
15
|
Yu F, Valles DA, Chen W, Daniel SD, Ghiviriga I, Seidel D. Regioselective α-Cyanation of Unprotected Alicyclic Amines. Org Lett 2022; 24:6364-6368. [PMID: 36036764 PMCID: PMC9548390 DOI: 10.1021/acs.orglett.2c02148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secondary alicyclic amines are converted to α-aminonitriles via addition of TMSCN to their corresponding imines, intermediates that are produced in situ via the oxidation of amine-derived lithium amides with simple ketone oxidants. Amines with an existing α-substituent undergo regioselective α'-cyanation even if the C-H bonds at that site are less activated. Amine α-arylation can be combined with α'-cyanation to generate difunctionalized products in a single operation.
Collapse
Affiliation(s)
- Fuchao Yu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Daniel A. Valles
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Weijie Chen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Scott D. Daniel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
16
|
Zhang W, Lu Q, Wang M, Zhang Y, Xia XF, Wang D. Photoinduced Silylation of N-Heteroarenes and Unsaturated Benzamides with Naphthalimide-Based Organic Photocatalysts. Org Lett 2022; 24:3797-3801. [PMID: 35587252 DOI: 10.1021/acs.orglett.2c01330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Described herein is the development of a general strategy for the silylation of N-heteroaromatics and unsaturated benzamides via the rational designing of an efficient organic photocatalyst. The process features operational simplicity, mild reaction conditions, and the use of readily prepared naphthalimide (NI)-based organic photocatalysts. Notably, both inert trialkylhydrosilanes and arylhydrosilanes are well tolerated with this protocol.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qi Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengshi Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongjin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
17
|
Zhang JH, Xiao TF, Ji ZQ, Chen HN, Yan PJ, Luo YC, Xu PF, Xu GQ. Organic photoredox catalytic amino-heteroarylation of unactivated olefins to access distal amino ketones. Chem Commun (Camb) 2022; 58:2882-2885. [PMID: 35133366 DOI: 10.1039/d1cc07189k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here we describe a metal-free amino-heteroarylation of unactivated olefins via organic photoredox catalysis, providing a concise and efficient approach for the rapid synthesis of various δ (β, ε)-amino ketones under mild conditions. This protocol demonstrates that the new photocatalyst Cz-NI developed by our group has an excellent photoredox catalytic performance. Finally, a series of mechanistic experiments and DFT calculations indicate that this transformation undergoes a photoredox catalytic sequential radical addition/functional group migration process.
Collapse
Affiliation(s)
- Ji-Hua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zi-Qin Ji
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Han-Nan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Pen-Ji Yan
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
18
|
Paul A, Vasseur C, Daniel SD, Seidel D. Synthesis of Polycyclic Isoindolines via α-C-H/N-H Annulation of Alicyclic Amines. Org Lett 2022; 24:1224-1227. [PMID: 35100511 PMCID: PMC9039734 DOI: 10.1021/acs.orglett.2c00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Relatively unstable cyclic imines, generated in situ from their corresponding alicyclic amines via oxidation of their lithium amides with simple ketone oxidants, engage aryllithium compounds containing a leaving group on an ortho-methylene functionality to provide polycyclic isoindolines in a single operation. The scope of this transformation includes pyrrolidine, piperidine, azepane, azocane, and piperazines.
Collapse
Affiliation(s)
- Anirudra Paul
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Camille Vasseur
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Scott D. Daniel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
19
|
Zhao TT, Yu WL, Feng ZT, Qin HN, Zheng HX, Xu PF. Photoredox/nickel dual catalyzed stereospecific synthesis of distal alkenyl ketones. Chem Commun (Camb) 2022; 58:1171-1174. [PMID: 34981102 DOI: 10.1039/d1cc06566a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The selective C-C bond deconstruction/refunctionalization via a photoredox/nickel dual-catalyzed hydroalkylation of alkynes is developed under mild reaction conditions. In this protocol, a broad range of alkyl- and aryl-alkynes could react smoothly with cycloalkanols, affording the corresponding distal and site-specific vinyl-substituted ketones with high yields and excellent regioselectivities. Moreover, DFT calculations verified that the electron-rich behavior of aromatics and weak Brønsted bases have a common effect on the photocatalytic oxidant ring-opening of cyclobutanols.
Collapse
Affiliation(s)
- Tian-Tian Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Wan-Lei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhi-Tao Feng
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hao-Ni Qin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Hai-Xue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
20
|
Lu B, Xiao WJ, Chen JR. Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules 2022; 27:517. [PMID: 35056829 PMCID: PMC8781888 DOI: 10.3390/molecules27020517] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
Visible-light photoredox catalysis has attracted tremendous interest within the synthetic community. As such, the activation mode potentially provides a more sustainable and efficient platform for the activation of organic molecules, enabling the invention of many controlled radical-involved reactions under mild conditions. In this context, amide synthesis via the strategy of photoredox catalysis has received growing interest due to the ubiquitous presence of this structural motif in numerous natural products, pharmaceuticals and functionalized materials. Employing this strategy, a wide variety of amides can be prepared effectively from halides, arenes and even alkanes under irradiation of visible light. These methods provide a robust alternative to well-established strategies for amide synthesis that involve condensation between a carboxylic acid and amine mediated by a stoichiometric activating agent. In this review, the representative progresses made on the synthesis of amides through visible light-mediated radical reactions are summarized.
Collapse
Affiliation(s)
- Bin Lu
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Wen-Jing Xiao
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Jia-Rong Chen
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| |
Collapse
|
21
|
He Y, Huang T, Shi X, Chen Y, Wu Q. Recent Advances in Photocatalytic Reactions with Isocyanides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Aboonajmi J, Panahi F, Hosseini MA, Aberi M, Sharghi H. Iodine-catalyzed synthesis of benzoxazoles using catechols, ammonium acetate, and alkenes/alkynes/ketones via C–C and C–O bond cleavage. RSC Adv 2022; 12:20968-20972. [PMID: 35919129 PMCID: PMC9302334 DOI: 10.1039/d2ra03340b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient metal-free synthesis strategy of benzoxazoles was developed via coupling catechols, ammonium acetate, and alkenes/alkynes/ketones. The developed methodology represents an operationally simple, one-pot and large-scale procedure for the preparation of benzoxazole derivatives using molecular iodine as the catalyst. A metal-free one-pot multi-component method for the efficient synthesis of 2-aryl benzoxazoles via coupling of catechols, ammonium acetate and alkenes/alkynes/ketones using an I2–DMSO catalyst system is illustrated.![]()
Collapse
Affiliation(s)
- Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Mina Aali Hosseini
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Mahdi Aberi
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Technical and Vocational University (TVU), Shiraz Branch, Shiraz, Iran
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
23
|
Li Y, Ren X, Chen Y, Zhu X, Hao XQ, Song MP. Fe(III)-Catalyzed N-Amidomethylation of Secondary and Primary Anilines with TosMIC. Org Lett 2021; 24:250-255. [PMID: 34931836 DOI: 10.1021/acs.orglett.1c03910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A Fe(III)-catalyzed N-amidomethylation of secondary and primary anilines with p-toluenesulfonylmethyl isocyanide (TosMIC) in water is described. TosMIC plays dual roles as the source of methylene as well as an amidating reagent to form α-amino amides in this multicomponent reaction. The combination of TosMIC and other isocyanides was also investigated to give the desired products in acceptable yields. The current protocol features use of iron catalyst and nontoxic media, broad substrate scope, mild conditions, and operational simplicity.
Collapse
Affiliation(s)
- Yigao Li
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P.R. China
| | - Xiaohuang Ren
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P.R. China
| | - Yi Chen
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P.R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P.R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P.R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P.R. China
| |
Collapse
|
24
|
Yi MJ, Xiao TF, Li WH, Zhang YF, Yan PJ, Zhang B, Xu PF, Xu GQ. Organic photoredox catalytic α-C(sp 3)-H phosphorylation of saturated aza-heterocycles. Chem Commun (Camb) 2021; 57:13158-13161. [PMID: 34812446 DOI: 10.1039/d1cc05767g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A metal-free C(sp3)-H phosphorylation of saturated aza-heterocycles via the merger of organic photoredox and Brønsted acid catalyses was established under mild conditions. This protocol provided straightforward and economic access to a variety of valuable α-phosphoryl cyclic amines by using commercially available diarylphosphine oxide reagents. In addition, the D-A fluorescent molecule DCQ was used for the first time as a photocatalyst and exhibited an excellent photoredox catalytic efficiency in this transformation. A series of mechanistic experiments and DFT calculations demonstrated that this transformation underwent a sequential visible light photoredox catalytic oxidation/nucleophilic addition process.
Collapse
Affiliation(s)
- Ming-Jun Yi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Wen-Hui Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yi-Fan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Pen-Ji Yan
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
25
|
Xu GQ, Xu PF. Visible light organic photoredox catalytic cascade reactions. Chem Commun (Camb) 2021; 57:12914-12935. [PMID: 34782893 DOI: 10.1039/d1cc04883j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the past years, impressive progress has been made in the development of organic photoredox catalytic cascade reactions without the participation of expensive and toxic transition metals under visible light irradiation. These transformations highly depend on the in situ generation of various radical species in the photoredox catalytic cycles. Numerous chemically and biomedically valuable building blocks have been synthesized through this efficient and sustainable protocol. In this review, we highlight the recent progress in this blooming area by presenting a series of new catalytic cascade reactions mediated by organic photoredox catalysts and describe their mechanisms and applications which have appeared in the recent literature.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
26
|
Xiao TF, Zhang YF, Hou WT, Yan PJ, Hai J, Xu PF, Xu GQ. Dehydrogenation/(3+2) Cycloaddition of Saturated Aza-Heterocycles via Merging Organic Photoredox and Lewis Acid Catalysis. Org Lett 2021; 23:8942-8946. [PMID: 34757741 DOI: 10.1021/acs.orglett.1c03431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a photoinduced dehydrogenation/(3+2) cycloaddition reaction by merging organic photoredox and Lewis acid catalysis, providing a straightforward and efficient approach for directly installing a benzofuran skeleton on the saturated aza-heterocycles. In this protocol, we also describe a novel organic photocatalyst (t-Bu-DCQ) with the advantages of a wider redox potential, easy synthesis, and a low price. Furthermore, the stepwise activation mechanism of dual C(sp3)-H bonds was demonstrated by a series of experimental and computational studies.
Collapse
Affiliation(s)
- Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yi-Fan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wen-Tao Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Pen-Ji Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities, Hexi University, Zhangye 734000, P. R. China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
27
|
Mao ZY, Nie XD, Feng YM, Si CM, Wei BG, Lin GQ. Cu(OTf) 2 catalyzed Ugi-type reaction of N, O-acetals with isocyanides for the synthesis of pyrrolidinyl and piperidinyl 2-carboxamides. Chem Commun (Camb) 2021; 57:9248-9251. [PMID: 34519320 DOI: 10.1039/d1cc03113a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Cu(OTf)2 catalyzed Ugi-type reactions of N,O-acetals with isocyanides have been described for the synthesis of pyrrolidinyl and piperidinyl 2-carboxamides. 4-Hydroxy-5-substituted-prolinamides can be obtained in high diastereoselectivities (2,4-cis/trans > 19 : 1) and a stereoselective model was proposed for 2,4-cis selectivity. Moreover, 4-F-VH 032, a novel analog of the VHL ligand, was conveniently obtained by utilizing the present method.
Collapse
Affiliation(s)
- Zhuo-Ya Mao
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Xiao-Di Nie
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yi-Man Feng
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Chang-Mei Si
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Bang-Guo Wei
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
28
|
Matsuo BT, Oliveira PHR, Correia JTM, Paixão MW. Carbamoylation of Azomethine Imines via Visible-Light Photoredox Catalysis. Org Lett 2021; 23:6775-6779. [PMID: 34428073 DOI: 10.1021/acs.orglett.1c02353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A versatile and robust photocatalytic methodology to install the amide functional group into azomethine imine ions is described. This protocol is distinguished by its broad scope and mild reaction conditions, which are well suited for the preparation of structurally complex compounds in the form of amino acids, peptides, and small drug-like molecules. Moreover, the generated pyrazolidinone core could be easily converted into β-alanine analogues.
Collapse
Affiliation(s)
- Bianca T Matsuo
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, Washington Luís Highway, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Pedro H R Oliveira
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, Washington Luís Highway, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - José Tiago M Correia
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, Washington Luís Highway, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Márcio W Paixão
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, Washington Luís Highway, km 235, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
29
|
Valles DA, Dutta S, Paul A, Abboud KA, Ghiviriga I, Seidel D. α,α'-C-H Bond Difunctionalization of Unprotected Alicyclic Amines. Org Lett 2021; 23:6367-6371. [PMID: 34323490 PMCID: PMC8609614 DOI: 10.1021/acs.orglett.1c02187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple one-pot procedure enables the sequential, regioselective, and diastereoselective introduction of the same or two different substituents to the α- and α'-positions of unprotected azacycles. Aryl, alkyl, and alkenyl substituents are introduced via their corresponding organolithium compounds. The scope of this transformation includes pyrrolidines, piperidines, azepanes, and piperazines.
Collapse
Affiliation(s)
- Daniel A. Valles
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Subhradeep Dutta
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Anirudra Paul
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Khalil A. Abboud
- Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
30
|
Ledovskaya MS, Polynski MV, Ananikov VP. One-Pot and Two-Chamber Methodologies for Using Acetylene Surrogates in the Synthesis of Pyridazines and Their D-Labeled Derivatives. Chem Asian J 2021; 16:2286-2297. [PMID: 34152671 DOI: 10.1002/asia.202100562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Indexed: 01/03/2023]
Abstract
Acetylene surrogates are efficient tools in modern organic chemistry with largely unexplored potential in the construction of heterocyclic cores. Two novel synthetic paths to 3,6-disubstituted pyridazines were proposed using readily available acetylene surrogates through flexible C2 unit installation procedures in a common reaction space mode (one-pot) and distributed reaction space mode (two-chamber): (1) an interaction of 1,2,4,5-tetrazine and its acceptor-functionalized derivatives with a CaC2 -H2 O mixture performed in a two-chamber reactor led to the corresponding pyridazines in quantitative yields; (2) [4+2] cycloaddition of 1,2,4,5-tetrazines to benzyl vinyl ether can be considered a universal synthetic path to a wide range of pyridazines. Replacing water with D2 O and vinyl ether with its trideuterated analog in the developed procedures, a range of 4,5-dideuteropyridazines of 95-99% deuteration degree was synthesized for the first time. Quantum chemical modeling allowed to quantify the substituent effect in both synthetic pathways.
Collapse
Affiliation(s)
- Maria S Ledovskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
| | - Mikhail V Polynski
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia.,N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia.,N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| |
Collapse
|
31
|
Zhang JL, Ye WL, Zhang J, Hu XQ, Xu PF. Enantioselective Construction of Polycyclic Indazole Skeletons Bearing Five Consecutive Chiral Centers through an Asymmetric Triple-Reaction Sequence. Org Lett 2021; 23:5033-5038. [PMID: 34138570 DOI: 10.1021/acs.orglett.1c01559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel approach for the asymmetric construction of polycyclic indazole skeletons via enamine-imine activation and PCET activation was developed by merging organocatalysis with photocatalysis through an asymmetric triple-reaction sequence. In this process, five C-X bonds and five consecutive chiral centers were efficiently constructed. Differently substituted polycyclic indazole deriatives were successfully constructed with satisfactory results under mild conditions.
Collapse
Affiliation(s)
- Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wen-Long Ye
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jie Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|