1
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
2
|
Zhong Z, Wu H, Chen X, Luo Y, Yang L, Feng X, Liu X. Visible-Light-Promoted Enantioselective Acylation and Alkylation of Aldimines Enabled by 9-Fluorenone Electron-Shuttle Catalysis. J Am Chem Soc 2024; 146:20401-20413. [PMID: 38981037 DOI: 10.1021/jacs.4c06044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Chiral acyclic α-tertiary amino ketones are widely present in various natural products and pharmaceuticals; however, the direct synthesis of this pharmacophore through a robust strategy still presents significant challenges. The emerging photocatalysis provides a powerful approach to construct chemical bonds that are difficult to form via a traditional two-electron pathway. Herein, we developed visible-light-induced chiral Lewis acid-catalyzed highly enantioselective acylation/alkylation of aldimines enabled by cooperative FLN (9-fluorenone) electron-shuttle catalysis via radical addition. An array of α-tertiary amino ketones, β-amino alcohols, and chiral amines were achieved with high yields and good to excellent stereocontrol (87 examples, up to 84% yield, 96% ee). These products can be easily transformed into valuable and bioactive skeletons. Extensive control experiments, detailed mechanism studies, and density functional theory calculations elucidated the reaction process and highlighted the crucial role played by FLN.
Collapse
Affiliation(s)
- Ziwei Zhong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongda Wu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaofan Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yao Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Longqing Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Wang K, Niu S, Tang W, Xue D, Xiao J, Li H, Wang C. Ru-catalyzed asymmetric hydrogenation of α,β-unsaturated ketones via a hydrogenation/isomerization cascade. Chem Commun (Camb) 2024; 60:4338-4341. [PMID: 38545855 DOI: 10.1039/d4cc00356j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Ru-catalyzed asymmetric hydrogenation of α-substituted α,β-unsaturated ketones has been developed for the enantioselective synthesis of chiral α-substituted secondary alcohols with high diastereo- and enantioselectivities (up to >99 : 1 dr, 98% ee). Mechanistic experiments suggest that the reaction proceeds via a Ru-catalyzed asymmetric hydrogenation of the CO bond in concert with a base-promoted allylic alcohol isomerization, and the final stereoselectivities were controlled by a DKR process during the asymmetric hydrogenation of the ketone intermediate.
Collapse
Affiliation(s)
- Kun Wang
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Saisai Niu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L697ZD, UK
| | - Hongfeng Li
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
4
|
Wang M, Zhang C, Ci C, Jiang H, Dixneuf PH, Zhang M. Room Temperature Construction of Vicinal Amino Alcohols via Electroreductive Cross-Coupling of N-Heteroarenes and Carbonyls. J Am Chem Soc 2023; 145:10967-10973. [PMID: 37075201 DOI: 10.1021/jacs.3c02776] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Despite the widespread applications of α-hydroxyalkyl cyclic amines, direct and diverse access to such a class of unique vicinal amino alcohols still remains, to date, a challenge. Here, through a strategy of electroreductive α-hydroxyalkylation of inactive N-heteroarenes with ketones or electron-rich arylaldehydes, we describe a room temperature approach for the direct construction of α-hydroxyalkyl cyclic amines, which features a broad substrate scope, operational simplicity, high chemoselectivity, and no need for pressurized H2 gas and transition metal catalysts. The zinc ion generated from anode oxidation plays a crucial role in the activation of both reactants by decreasing their reduction potentials. The strategy of electroreduction in combination with substrate activation by Lewis acids in this work is anticipated to develop more useful transformations.
Collapse
Affiliation(s)
- Maorui Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chengqian Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chenggang Ci
- Key Laboratory of Computational Catalytic Chemistry of Guizhou Province, Department of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | | | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Zhou Y, Yue X, Jiang F, Sun J, Guo W. Catalytic asymmetric synthesis of α-tertiary aminoketones from sulfoxonium ylides bearing two aryl groups. Chem Commun (Camb) 2023; 59:1193-1196. [PMID: 36629287 DOI: 10.1039/d2cc06147c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Disclosed herein is an efficient organocatalytic formal N-H insertion reaction of arylamines with α-keto sulfoxonium ylides bearing two aryl groups, delivering a broad range of α-tertiary aminoketones with good to excellent yields and enantioselectivities (up to 90% yield and 94% ee). The utilities of this protocol were also demonstrated by facile preparation of enantioenriched 2-amino-1,2-diarylethanol bearing two different aryl groups, a type of important building block lacking efficient access.
Collapse
Affiliation(s)
- Ying Zhou
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xin Yue
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Feng Jiang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Wengang Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
6
|
Xu Y, Luo Y, Ye J, Deng Y, Liu D, Zhang W. Rh-Catalyzed Sequential Asymmetric Hydrogenations of 3-Amino-4-Chromones Via an Unusual Dynamic Kinetic Resolution Process. J Am Chem Soc 2022; 144:20078-20089. [PMID: 36255361 DOI: 10.1021/jacs.2c09266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rh-catalyzed sequential asymmetric hydrogenations of 3-amino-4-chromones have been achieved for the first time via an unprecedented dynamic kinetic resolution under neutral conditions, providing (S,R)-3-amino-4-chromanols in high yields (up to 98%) with excellent enantio- and diastereoselectivities (up to 99.9% ee and 20:1 dr). The mechanistic studies based on control experiments and density functional theory (DFT) calculations suggest that the dynamic kinetic resolution process for the intermediate enantiomers generated in the first hydrogenation step proceeded via a stereomutation (or called chiral assimilation) pathway from an undesired enantiomer to the desired enantiomer rather than via traditional racemization of the undesired enantiomer. The protocol can be performed on a gram scale with a relatively low catalyst loading and offers a practical and convenient pathway for synthesizing a series of bioactive chromanols and their derivatives.
Collapse
Affiliation(s)
- Yunnan Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianxun Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu Deng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
7
|
Parker BF, Chatani N. Selective Nickel-Catalyzed Hydrodefluorination of Amides Using Sodium Borohydride. J Org Chem 2022; 87:9969-9976. [PMID: 35818824 DOI: 10.1021/acs.joc.2c00971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrodefluorination selective to the ortho position to amides is accomplished under mild conditions using sodium borohydride and a nickel catalyst. The facile formation of a nickelacycle intermediate with a specific geometry ensures selectivity without the need for electronic directing groups, and fluorine atoms in other positions remain intact. This method avoids the use of stoichiometric silanes which are typical for most other defluorination reactions, resulting in virtually no organic waste byproducts.
Collapse
Affiliation(s)
- Bernard F Parker
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Xiao G, Xie C, Guo Q, Zi G, Hou G, Huang Y. Nickel-Catalyzed Asymmetric Hydrogenation of γ-Keto Acids, Esters, and Amides to Chiral γ-Lactones and γ-Hydroxy Acid Derivatives. Org Lett 2022; 24:2722-2727. [PMID: 35363497 DOI: 10.1021/acs.orglett.2c00826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient asymmetric hydrogenation of a series of γ-keto acid derivatives, including γ-keto acids, esters, and amides, using a Ni-(R,R)-QuinoxP* complex as the catalyst has been developed to afford chiral γ-hydroxy acid derivatives with excellent enantioselectivities, up to 99.9% ee. This method provides not only an economical one-pot approach for the synthesis of chiral γ-lactones but also access to (S)-norfluoxetine, an inhibitor of neural serotonin reuptake and an essential intermediate for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Guiying Xiao
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuping Huang
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| |
Collapse
|
9
|
Wang C, Zhou L, Qiu J, Yang K, Song Q. Rh-Catalyzed diastereoselective addition of arylboronic acids to α-keto N-tert-butanesulfinyl aldimines: synthesis of α-amino ketones. Org Chem Front 2022. [DOI: 10.1039/d1qo01721g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we present a diastereoselective addition of arylboronic acids to α-keto N-tert-butanesulfinyl aldimines catalyzed by a Rh(i) catalyst.
Collapse
Affiliation(s)
- Cece Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Lu Zhou
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jian Qiu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
- Institute of Next Generation Matter Transformation, College of Materials Science Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| |
Collapse
|