1
|
Chen J, Liu X, Zhang P, Zhang S, Zhou H, Li L, Luo H, Wang H, Sun Y. Aerobic Oxidative Carboxylation of Styrene Over Cobalt Catalysts: Integrated CO 2 Capture and Conversion. CHEMSUSCHEM 2024; 17:e202301567. [PMID: 38517635 DOI: 10.1002/cssc.202301567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The direct synthesis of cyclic carbonates through oxidative carboxylation of alkenes using CO2 and O2 offers a sustainable and carbon-neutral method for CO2 utilization, which is, however, still a largely unexplored field. Here we develop a single-atom catalyst (SAC) Co-N/O-C as the earth-abundant metal catalyst for the oxidative carboxylation of styrene with CO2 and O2. Remarkably, even using the flue gas as an impure CO2 and O2 source, desired cyclic carbonate could be obtained with moderate productivity, which shows the potential for integrated CO2 capture and conversion, leveraging the high CO2 adsorption capacity of Co-N/O-C. In addition, the catalyst can be reused five times without an obvious decline in activity. Detailed characterizations and theoretical calculations elucidate the crucial role of single Co atoms in activating O2 and CO2, as well as controlling selectivity.
Collapse
Affiliation(s)
- Junjun Chen
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Xiaofang Liu
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Peipei Zhang
- CNOOC Institute of Chemical & Advanced Materials (Beijing) Co. Ltd., Beijing, 102209, P. R. China
| | - Shunan Zhang
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai, 201203, P. R. China
| | - Haozhi Zhou
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai, 201203, P. R. China
| | - Lin Li
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Hu Luo
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Hui Wang
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai, 201203, P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai, 201203, P. R. China
| |
Collapse
|
2
|
Zhang Q, Hu C, Pang X, Chen X. Multi-Functional Organofluoride Catalysts for Polyesters Production and Upcycling Degradation. CHEMSUSCHEM 2024; 17:e202300907. [PMID: 37735092 DOI: 10.1002/cssc.202300907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
The production and degradation of polyesters are two crucial processes in polyester materials' life cycle. In this work, multi-functional organocatalysts based on fluorides for both processes are described. Organofluorides were developed as catalysts for ring-opening polymerization of lactide (lactone). Compared with a series of organohalides, organofluoride performed the best catalytic reactivity because of the hydrogen bond interaction between F- and alcohol initiator. The Mn values of polyester products could be up to 72 kg mol-1 . With organofluoride catalysts, the ring-opening copolymerization between various anhydrides and epoxides could be established. Furthermore, terpolymerization of anhydride, epoxide, and lactide could be constructed by the self-switchable organofluoride catalyst to yield a block polymer with a strictly controlled polymerization sequence. Organofluorides were also efficient catalysts for upcycling polyester plastic wastes via alcoholysis. Mixed polyester materials could also be hierarchically recycled.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| |
Collapse
|
3
|
Sohtome Y, Komagawa S, Nakamura A, Hashizume D, Lectard S, Akakabe M, Hamashima Y, Uchiyama M, Sodeoka M. Experimental and Computational Investigation of Facial Selectivity Switching in Nickel-Diamine-Acetate-Catalyzed Michael Reactions. J Org Chem 2023. [PMID: 36813263 DOI: 10.1021/acs.joc.2c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chiral Ni complexes have revolutionized both asymmetric acid-base and redox catalysis. However, the coordination isomerism of Ni complexes and their open-shell property still often hinder the elucidation of the origin of their observed stereoselectivity. Here, we report our experimental and computational investigations to clarify the mechanism of β-nitrostyrene facial selectivity switching in Ni(II)-diamine-(OAc)2-catalyzed asymmetric Michael reactions. In the reaction with a dimethyl malonate, the Evans transition state (TS), in which the enolate binds in the same plane with the diamine ligand, is identified as the lowest-energy TS to promote C-C bond formation from the Si face in β-nitrostyrene. In contrast, a detailed survey of the multiple potential pathways in the reaction with α-keto esters points to a clear preference for our proposed C-C bond-forming TS, in which the enolate coordinates to the Ni(II) center in apical-equatorial positions relative to the diamine ligand, thereby promoting Re face addition in β-nitrostyrene. The N-H group plays a key orientational role in minimizing steric repulsion.
Collapse
Affiliation(s)
- Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinsuke Komagawa
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Ayako Nakamura
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Sylvain Lectard
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshitaka Hamashima
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masanobu Uchiyama
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Runikhina SA, Tsygankov AA, Afanasyev OI, Chusov D. Reductive α-alkylation of ketones with aldehydes at atmospheric pressure of carbon monoxide: the effect of fluoride activation in ruthenium catalysis. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
5
|
Luo J, Deng Y, Deng T, Deng L. Catalytic Enantioconvergent Conjugate Addition of Organosilanes via a Strategy of Fluorodesilylation. J Am Chem Soc 2022; 144:23264-23270. [PMID: 36512757 DOI: 10.1021/jacs.2c10777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fluorodesilylation is a widely used strategy to activate organosilanes as nucleophiles for the development of organic transformations. To date, highly enantioselective catalytic fluorodesilylations have been limited to the activation of silyl ethers, organosilanes bearing specific substituents such as trifluoromethyl and cyanide, allylsilanes, and acylsilanes. However, the catalytic enantioconvergent reaction of racemic organosilanes bearing variable substituents via fluorodesilylation has been rarely reported. We report an unprecedented enantioconvergent fluorodesilylation of racemic organosilanes bearing various substituents with a chiral ammonium fluoride. Notably, these results demonstrated that the fluorodesilylation could potentially be a general strategy for the development of catalytic asymmetric reactions of racemic organosilanes.
Collapse
Affiliation(s)
- Jisheng Luo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| | - Yu Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| | - Tianran Deng
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| |
Collapse
|
6
|
Kuznetsov NY, Maximov AL, Beletskaya IP. Novel Technological Paradigm of the Application of Carbon Dioxide as a C1 Synthon in Organic Chemistry: I. Synthesis of Hydroxybenzoic Acids, Methanol, and Formic Acid. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
7
|
Chan NH, Gomez CA, Vennelakanti V, Du Q, Kulik HJ, Lewis JC. Non-Native Anionic Ligand Binding and Reactivity in Engineered Variants of the Fe(II)- and α-Ketoglutarate-Dependent Oxygenase, SadA. Inorg Chem 2022; 61:14477-14485. [PMID: 36044713 PMCID: PMC9789792 DOI: 10.1021/acs.inorgchem.2c02872] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mononuclear non-heme Fe(II)- and α-ketoglutarate-dependent oxygenases (FeDOs) catalyze a site-selective C-H hydroxylation. Variants of these enzymes in which a conserved Asp/Glu residue in the Fe(II)-binding facial triad is replaced by Ala/Gly can, in some cases, bind various anionic ligands and catalyze non-native chlorination and bromination reactions. In this study, we explore the binding of different anions to an FeDO facial triad variant, SadX, and the effects of that binding on HO• vs X• rebound. We establish not only that chloride and bromide enable non-native halogenation reactions but also that all anions investigated, including azide, cyanate, formate, and fluoride, significantly accelerate and influence the site selectivity of SadX hydroxylation catalysis. Azide and cyanate also lead to the formation of products resulting from N3•, NCO•, and OCN• rebound. While fluoride rebound is not observed, the rate acceleration provided by this ligand leads us to calculate barriers for HO• and F• rebound from a putative Fe(III)(OH)(F) intermediate. These calculations suggest that the lack of fluorination is due to the relative barriers of the HO• and F• rebound transition states rather than an inaccessible barrier for F• rebound. Together, these results improve our understanding of the FeDO facial triad variant tolerance of different anionic ligands, their ability to promote rebound involving these ligands, and inherent rebound preferences relative to HO• that will aid efforts to develop non-native catalysis using these enzymes.
Collapse
Affiliation(s)
- Natalie H. Chan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Christian A. Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Qian Du
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jared C. Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
8
|
Afanasyev OI, Kliuev FS, Tsygankov AA, Nelyubina YV, Gutsul E, Novikov VV, Chusov D. Fluoride Additive as a Simple Tool to Qualitatively Improve Performance of Nickel-Catalyzed Asymmetric Michael Addition of Malonates to Nitroolefins. J Org Chem 2022; 87:12182-12195. [PMID: 36069733 DOI: 10.1021/acs.joc.2c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nowadays, design of the new chiral ligands for organometallic catalysts is often based on the step-by-step increase in their complexity to improve efficiency. Herein we describe that simple in situ addition of the fluoride source to the asymmetric organometallic catalyst can improve not only activity but also enantioselectivity. Bromide-nickel diimine complexes were found to catalyze asymmetric Michael addition in low yields and ee, but activation with fluoride leads to a significant improvement in catalyst performance. The developed approach was applied to prepare several enantioenriched GABA analogues.
Collapse
Affiliation(s)
- Oleg I Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Fedor S Kliuev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Alexey A Tsygankov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,Bauman Moscow State Technical University, Baumanskaya Str., 5, 105005 Moscow, Russia
| | - Evgenii Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Valentin V Novikov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
9
|
Ganguly S, Bhakta S, Ghosh T. Gold‐Catalyzed Synthesis of Spirocycles: Recent Advances. ChemistrySelect 2022. [DOI: 10.1002/slct.202201407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Somnath Ganguly
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| | - Sayantika Bhakta
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| | - Tapas Ghosh
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| |
Collapse
|
10
|
Podyacheva E, Afanasyev OI, Ostrovskii VS, Chusov D. Syngas Instead of Hydrogen Gas as a Reducing Agent─A Strategy To Improve the Selectivity and Efficiency of Organometallic Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Evgeniya Podyacheva
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Oleg I. Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Vladimir S. Ostrovskii
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
11
|
Enhancing the efficiency of the ruthenium catalysts in the reductive amination without an external hydrogen source. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|