1
|
Zhang J, Yun Q, Dai Y, Zheng M, Lin Z, Deng Z, Qu X, Lei C. Trifluoromethylation of Antimycin via Extender Unit Incorporation Improves Antifungal Potency. Org Lett 2025; 27:4565-4568. [PMID: 40257937 DOI: 10.1021/acs.orglett.5c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
We report the first biosynthesis of trifluoromethyl (TFM)-containing extender unit and its incorporation into the polyketide biosynthetic pathway. Using engineered enzymes UkaQFAV and Arm13-ACCase, we synthesized a TFM-containing extender unit, which was successfully integrated into the antimycin structure. This modification resulted in stereochemical changes, leading to the formation of an unusual 7S-epimer. The TFM-modified antimycin derivatives exhibited significantly enhanced antifungal activity, providing a new strategy for polyketide diversification and drug development.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Rd., Shanghai 201203, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 1308 Keyuan Rd., Shanghai 201203, China
| | - Qian Yun
- School of Pharmacy, Fudan University, 826 Zhangheng Rd., Shanghai 201203, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 1308 Keyuan Rd., Shanghai 201203, China
| | - Yuhan Dai
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 1308 Keyuan Rd., Shanghai 201203, China
| | - Mengmeng Zheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 1308 Keyuan Rd., Shanghai 201203, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 1308 Keyuan Rd., Shanghai 201203, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 1308 Keyuan Rd., Shanghai 201203, China
| | - Chun Lei
- School of Pharmacy, Fudan University, 826 Zhangheng Rd., Shanghai 201203, China
| |
Collapse
|
2
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Jin S, Chen H, Zhang J, Lin Z, Qu X, Jia X, Lei C. Analyzing and engineering of the biosynthetic pathway of mollemycin A for enhancing its production. Synth Syst Biotechnol 2024; 9:445-452. [PMID: 38606205 PMCID: PMC11007384 DOI: 10.1016/j.synbio.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Mollemycin A (MOMA) is a unique glyco-hexadepsipeptide-polyketide that was isolated from a Streptomyces sp. derived from the Australian marine environment. MOMA exhibits remarkable inhibitory activity against both drug-sensitive and multidrug-resistant malaria parasites. Optimizing MOMA through structural modifications or product enhancements is necessary for the development of effective analogues. However, modifying MOMA using chemical approaches is challenging, and the production titer of MOMA in the wild-type strain is low. This study identified and characterized the biosynthetic gene cluster of MOMA for the first time, proposed its complex biosynthetic pathway, and achieved an effective two-pronged enhancement of MOMA production. The fermentation medium was optimized to increase the yield of MOMA from 0.9 mg L-1 to 1.3 mg L-1, a 44% boost. Additionally, a synergistic mutant strain was developed by deleting the momB3 gene and overexpressing momB2, resulting in a 2.6-fold increase from 1.3 mg L-1 to 3.4 mg L-1. These findings pave the way for investigating the biosynthetic mechanism of MOMA, creating opportunities to produce a wide range of MOMA analogues, and developing an efficient strain for the sustainable and economical production of MOMA and its analogues.
Collapse
Affiliation(s)
- Shixue Jin
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huixue Chen
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinying Jia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Department of Biochemistry, National University of Singapore, 14 Medical Dr, Singapore, 117599
| | - Chun Lei
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
4
|
Heng E, Lim YW, Leong CY, Ng VWP, Ng SB, Lim YH, Wong FT. Enhancing armeniaspirols production through multi-level engineering of a native Streptomyces producer. Microb Cell Fact 2023; 22:84. [PMID: 37118806 PMCID: PMC10142417 DOI: 10.1186/s12934-023-02092-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/11/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Nature has provided unique molecular scaffolds for applications including therapeutics, agriculture, and food. Due to differences in ecological environments and laboratory conditions, engineering is often necessary to uncover and utilize the chemical diversity. Although we can efficiently activate and mine these often complex 3D molecules, sufficient production of target molecules for further engineering and application remain a considerable bottleneck. An example of these bioactive scaffolds is armeniaspirols, which are potent polyketide antibiotics against gram-positive pathogens and multi-resistance gram-negative Helicobacter pylori. Here, we examine the upregulation of armeniaspirols in an alternative Streptomyces producer, Streptomyces sp. A793. RESULTS Through an incidental observation of enhanced yields with the removal of a competing polyketide cluster, we observed seven-fold improvement in armeniaspirol production. To further investigate the improvement of armeniaspirol production, we examine upregulation of armeniaspirols through engineering of biosynthetic pathways and primary metabolism; including perturbation of genes in biosynthetic gene clusters and regulation of triacylglycerols pool. CONCLUSION With either overexpression of extender unit pathway or late-stage N-methylation, or the deletion of a competing polyketide cluster, we can achieve seven-fold to forty nine-fold upregulation of armeniaspirol production. The most significant upregulation was achieved by expression of heterologous fatty acyl-CoA synthase, where we observed not only a ninety seven-fold increase in production yields compared to wild type, but also an increase in the diversity of observed armeniaspirol intermediates and analogs.
Collapse
Affiliation(s)
- Elena Heng
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Singapore
| | - Yi Wee Lim
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Singapore
| | - Chung Yan Leong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 2, Nanos, Singapore, 138669, Singapore
| | - Veronica W P Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 2, Nanos, Singapore, 138669, Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 2, Nanos, Singapore, 138669, Singapore
| | - Yee Hwee Lim
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Singapore.
| | - Fong Tian Wong
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Singapore.
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Singapore.
| |
Collapse
|
5
|
Tian W, Chen X, Zhang J, Zheng M, Wei G, Deng Z, Qu X. Biosynthesis of Tetronates by a Nonribosomal Peptide Synthetase-Polyketide Synthase System. Org Lett 2023; 25:1628-1632. [PMID: 36876998 DOI: 10.1021/acs.orglett.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
A cryptic tetronate biosynthetic pathway was identified in Kitasatospora niigatensis DSM 44781 via heterologous expression. Distinct from the currently known biosynthetic pathways, this system utilizes a partially functional nonribosomal peptide synthetase and a broadly selective polyketide synthase to direct the assembly and lactonization of the tetronate scaffold. By employing a permissive crotonyl-CoA reductase/carboxylase to provide different extender units, seven new tetronates (kitaniitetronins A-G) were obtained via precursor-directed biosynthesis.
Collapse
Affiliation(s)
- Wenya Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinru Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Guangzheng Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
6
|
Jaroensuk J, Chuaboon L, Chaiyen P. Biochemical reactions for in vitro ATP production and their applications. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Zheng M, Zhang J, Zhang W, Yang L, Yan X, Tian W, Liu Z, Lin Z, Deng Z, Qu X. An Atypical Acyl‐CoA Synthetase Enables Efficient Biosynthesis of Extender Units for Engineering a Polyketide Carbon Scaffold. Angew Chem Int Ed Engl 2022; 61:e202208734. [DOI: 10.1002/anie.202208734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Wan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xiaoli Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zhihao Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
8
|
Zheng M, Zhang J, Zhang W, Yang L, Yan X, Tian W, Liu Z, Lin Z, Deng Z, Qu X. An Atypical Acyl‐CoA Synthetase Enables Efficient Biosynthesis of Extender Units for Engineering a Polyketide Carbon Scaffold. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mengmeng Zheng
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Jun Zhang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Wan Zhang
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Lu Yang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Xiaoli Yan
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Wenya Tian
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Zhihao Liu
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Zhi Lin
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Zixin Deng
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Xudong Qu
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology 800 Dongchuan Rd. 200240 Shanghai CHINA
| |
Collapse
|