1
|
Saadi L, Valade L, Chauvier C. Catalytic alkoxysilylation of C-H bonds with tert-butyl-substituted alkoxysilyldiazenes. Chem Sci 2025:d5sc02059j. [PMID: 40313519 PMCID: PMC12042343 DOI: 10.1039/d5sc02059j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025] Open
Abstract
Organoalkoxysilanes (e.g. R-SiMe3-n (OR') n , 1 ≤ n ≤ 3 with R = alkyl or aryl) have found various applications in synthetic chemistry and materials science because the silicon-bound alkoxy groups provide unique opportunities for further derivatization and transformations. Among the few catalytic strategies that allow the direct and intermolecular introduction of an alkoxysilyl unit onto an organic substrate, the alkoxysilylation of unactivated C-H bonds has barely been achieved despite its synthetic potential and the atom-economy it conveys. In particular, a catalytic and transition metal-free C-H silylation protocol towards this class of organosilicon compounds has yet to be reported. We herein describe the first general alkoxysilylation of (hetero)arene C(sp2)-H and benzylic C(sp3)-H bonds under ambient, transition metal-free conditions using newly-prepared tert-butyl-substituted alkoxysilyldiazenes (tBu-N[double bond, length as m-dash]N-SiMe3-n (OR') n , 1 ≤ n ≤ 3 with R' = Et, iPr or tBu) as silylating reagents and tBuOK as catalytic promoter.
Collapse
Affiliation(s)
- Lamine Saadi
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Loïc Valade
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Clément Chauvier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| |
Collapse
|
2
|
Neil B, Deis T, Fensterbank L, Chauvier C. Reductive C(sp 2)-Si Cross-Couplings by Catalytic Sodium-Bromine Exchange. Angew Chem Int Ed Engl 2025; 64:e202419496. [PMID: 39471277 DOI: 10.1002/anie.202419496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/01/2024]
Abstract
The metal-halogen exchange reaction constitutes one of the most important preparative routes towards polar organometallic reagents such as aryllithium or Grignard reagents. However, despite extensive developments over the past eight decades, this fundamental organometallic elementary step has only been exploited stoichiometrically. Against this background, we demonstrate that the sodium-bromine exchange reaction can be implemented in a catalytic setting as a mean to activate C(sp2)-Br bonds in a transition metal-free manner en route to the regioselective and general preparation of (hetero)aryl silanes. Simply treating structurally diverse (hetero)aryl bromides with N-tert-butyl-N'-silyldiazenes (tBu-N=N-Si) as silylating reagents and inexpensive sodium alkoxides as catalytic promoters yields a range of aromatic organosilicon compounds under ambient conditions. Mechanistic studies provide solid evidence for the involvement of tert-butyl sodium as the C(sp2)-Br metalating agent.
Collapse
Affiliation(s)
- Baptiste Neil
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Thomas Deis
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
- Collège de France, Chaire Activations en Chimie Moléculaire, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Clément Chauvier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
3
|
Swann N, Tang K, Nam J, Lee J, Domin M, Shaw TE, Kozimor SA, Som S, Lee KL. Intermolecular C-H silylations of arenes and heteroarenes with mono-, bis-, and tris(trimethylsiloxy)hydrosilanes: control of silane redistribution under operationally diverse approaches. Chem Sci 2024; 15:11912-11918. [PMID: 39092102 PMCID: PMC11290416 DOI: 10.1039/d4sc03394a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024] Open
Abstract
Efficient catalytic protocols for C-H silylations of arenes and heteroarenes with sterically and electronically different hydrosiloxysilanes are disclosed. The silylations are catalyzed by a well-defined Rh-complex (1 mol%), derived from [Rh(1,5-hexadiene)Cl]2 and a bulky BINAP type ligand. This catalyst not only promotes C-Si bond formation affording the desired products in up to 95% isolated yield, but also can suppress the silane redistribution side reactions of HSiMe2(OTMS). The protocol can also be applied for the C-H silylations of more reactive HSiMe(OTMS)2 with a much lower catalyst loading (0.25 mol%) and even with sterically demanding HSi(OTMS)3. The steric bulk of the arene substituent and hydrosiloxysilane is a major factor in determining the regioselectivity and electronic effect as secondary. The current method can be performed under operationally diverse conditions: with/without a hydrogen scavenger or solvent.
Collapse
Affiliation(s)
- Noah Swann
- University of Central Florida, Department of Chemistry 4111 Libra Drive, PSB #255 Orlando FL USA 32816
| | - Kiki Tang
- University of Central Florida, Department of Chemistry 4111 Libra Drive, PSB #255 Orlando FL USA 32816
| | - Jihyeon Nam
- University of Central Florida, Department of Chemistry 4111 Libra Drive, PSB #255 Orlando FL USA 32816
| | - Jooyeon Lee
- University of Central Florida, Department of Chemistry 4111 Libra Drive, PSB #255 Orlando FL USA 32816
| | - Marek Domin
- Mass Spectrometry Centre, Boston College 245 Beacon Street, Chestnut Hill MA 02467 USA
| | - Thomas E Shaw
- Los Alamos National Laboratory P.O. Box 1663 Los Alamos NM 87545 USA
| | - Stosh A Kozimor
- Los Alamos National Laboratory P.O. Box 1663 Los Alamos NM 87545 USA
| | - Salina Som
- University of Central Florida, Department of Chemistry 4111 Libra Drive, PSB #255 Orlando FL USA 32816
| | - Kangsang L Lee
- University of Central Florida, Department of Chemistry 4111 Libra Drive, PSB #255 Orlando FL USA 32816
| |
Collapse
|
4
|
Finck L, Oestreich M. Bond-Forming Processes Enabled by Silicon-Masked Aryl- and Alkyl-Substituted Diazenes. J Org Chem 2023; 88:15531-15539. [PMID: 37933948 DOI: 10.1021/acs.joc.3c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Aryl- and alkyldiimides (R-N═NH with R = aryl or alkyl) are elusive intermediates of valuable synthetic use, as they are assumed to be transient species in processes involving both carbon (with concomitant loss of N2) and nitrogen nucleophiles (with conservation of the N═N moiety). The actual compounds are fragile and as such not bench stable which is why they have not yet found the attention they deserve. Conversely, early contributions showed that the stability of the parent diimide is significantly increased by replacing the hydrogen atom by a silyl group, but the synthetic applicability of these silicon-protected aryl- and alkyldiazenes has been far less explored, in part due to the absence of general procedures for their preparation. This Perspective provides an overview of the underexplored diazene chemistry that has witnessed considerable progress in recent years and highlights the potential of this motif in a range of synthetically useful (catalytic) transformations. The rediscovered silicon-masked diazenes constitute a versatile platform possessing enhanced stability and tamed reactivity in comparison to the parent hydrogen-substituted diimides. Aryl, diazenyl, and alkyl anionic key intermediates can be selectively generated in situ under Lewis base or transition metal catalysis, giving rise to novel synthetic approaches as viable alternatives to the already existing methodologies.
Collapse
Affiliation(s)
- Lucie Finck
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
5
|
Thorwart T, Greb L. Reversible C-H bond silylation with a neutral silicon Lewis acid. Chem Sci 2023; 14:11237-11242. [PMID: 37860638 PMCID: PMC10583699 DOI: 10.1039/d3sc03488g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
The silicon-carbon bond is a valuable linchpin for synthetic transformations. However, installing Si-C functionalities requires metalated C-nucleophiles, activated silicon reagents (silylium ions, silyl radicals, and silyl anions), or transition metal catalysis, and it occurs irreversibly. In contrast, spontaneous C-H silylations with neutral silanes leading to anionic silicates, and their reversible deconstruction, are elusive. Herein, the CH-bond silylation of heterocycles or a terminal alkyne is achieved by reaction with bis(perfluoro(N-phenyl-ortho-amidophenolato))silane and 1,2,2,6,6-pentamethylpiperidine. Computational and experimental insights reveal a frustrated Lewis pair (FLP) mechanism. Adding a silaphilic donor to the ammonium silicate products induces the reformation of the C-H bond, thus complementing previously known irreversible C-H bond silylation protocols. Interestingly, the FLP "activated" N-methylpyrrole exhibits "deactivated" features against electrophiles, while a catalytic functionalization is found to be effective only in the absence of a base.
Collapse
Affiliation(s)
- Thaddäus Thorwart
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut Im Neuenheimer Feld 270 Heidelberg 69120 Germany
| | - Lutz Greb
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut Im Neuenheimer Feld 270 Heidelberg 69120 Germany
| |
Collapse
|
6
|
Liu S, Robert F, Landais Y. Dual photoredox nickel-catalyzed silylation of aryl/heteroaryl bromides using hydrosilanes. Chem Commun (Camb) 2023; 59:11369-11372. [PMID: 37665260 DOI: 10.1039/d3cc03246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Dual Ni and Ir catalysis enables the preparation of arylsilanes having a (TMS)3Si substituent from the corresponding aryl bromides and (TMS)3SiH at 30 °C using visible-light irradiation. This protocol avoids strong bases, high temperature and air and moisture sensitive silyl reagents, providing the expected arylsilanes in moderate to good yields. The reaction was shown to proceed through a silyl radical, likely generated by hydrogen atom abstraction from (TMS)3SiH by a bromide radical.
Collapse
Affiliation(s)
- Shuai Liu
- University Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| | - Frédéric Robert
- University Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| | - Yannick Landais
- University Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
7
|
Cerveri A, Vettori M, Serafino A, Maestri G. Base-promoted Conia-ene cyclization of propargyl amides. Org Biomol Chem 2023; 21:7311-7315. [PMID: 37671579 DOI: 10.1039/d3ob01107k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
We report a tBuOK-promoted synthesis of 1,3-dihydro-2H-pyrrol-2-one and 4-methylenepyrrolidin-2-one systems via Conia-ene like intramolecular cyclization. The method features extremely short reaction times (5 min) and mild reaction conditions (rt), enabling the trapping of a propargyl unit by an amide enolate. An intriguing anionic chain mechanism is at work, which can trigger the isomerization of an exo-alkene giving access to the otherwise elusive endo-product.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Mattia Vettori
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Andrea Serafino
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Giovanni Maestri
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
8
|
Ruggeri D, Motti E, Della Ca' N, Maestri G. Diastereoselective synthesis of tetrahydropyranes via Ag(I)-initiated dimerization of cinnamyl ethers. Org Biomol Chem 2022; 20:9287-9291. [PMID: 36385199 DOI: 10.1039/d2ob01876d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present herein the first synthesis of tetrahydropyranes promoted by a silver salt. Cinnamyl ethers undergo a formal dimerization affording the target heterocycle via sequential C-O bond cleavage/C-H bond functionalization. The cascade allows one to assemble three new bonds and to establish up to four stereocenters. The reaction likely proceeds through a cationic manifold that forms the target in a diastereoselective fashion.
Collapse
Affiliation(s)
- Davide Ruggeri
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Elena Motti
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy. .,CIRCC (Interuniversity Consortium on Chemical Reactivity and Catalysis), via Celso Ulpiani 27, 70126 Bari, Italy
| | - Nicola Della Ca'
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy. .,CIRCC (Interuniversity Consortium on Chemical Reactivity and Catalysis), via Celso Ulpiani 27, 70126 Bari, Italy
| | - Giovanni Maestri
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy. .,CIRCC (Interuniversity Consortium on Chemical Reactivity and Catalysis), via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
9
|
Rahman AJM, Finck L, Obermayer W, Oestreich M. Synthesis of Benzhydryl-Substituted Amines by Silanolate-Mediated Aldimine Arylation with Functionalized Aryl Nucleophiles Released from Diazene-Based Reagents. Org Lett 2022; 24:9118-9122. [DOI: 10.1021/acs.orglett.2c03798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Aliyaah J. M. Rahman
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Lucie Finck
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Wolfgang Obermayer
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
10
|
Finck L, Oestreich M. Synthesis of Non-Symmetric Azoarenes by Palladium-Catalyzed Cross-Coupling of Silicon-Masked Diazenyl Anions and (Hetero)Aryl Halides. Angew Chem Int Ed Engl 2022; 61:e202210907. [PMID: 35959922 DOI: 10.1002/anie.202210907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 01/07/2023]
Abstract
The photoswitchable motif of azobenzenes is of great importance across the life and materials sciences. This maintains a constant demand for their efficient synthesis, especially that of non-symmetric derivatives. We disclose here a general strategy for their synthesis through an unprecedented C(sp2 )-N(sp2 ) cross-coupling where functionalized aryl-substituted diazenes masked with a silyl group are employed as diazenyl pronucleophiles. These equivalents of fragile diazenyl anions couple with a diverse set of (hetero)aryl bromides under palladium catalysis with no loss of dinitrogen. The competing denitrogenative biaryl formation is fully suppressed. The reaction requires only a minimal excess, that is 1.2 equivalents, of the diazenyl component. By this, a broad range of azoarenes decorated with two electron-rich/deficient aryl groups can be accessed in a predictable way with superb functional-group tolerance.
Collapse
Affiliation(s)
- Lucie Finck
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
11
|
Sun H, Cheng Y, Teng H, Chen X, Niu X, Yang H, Cui YM, Xu LW, Yang L. 3-Alkyl-2-pyridyl Directing Group-Enabled C2 Selective C-H Silylation of Indoles and Pyrroles via an Iridium Catalyst. J Org Chem 2022; 87:13346-13351. [PMID: 36129738 DOI: 10.1021/acs.joc.2c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An iridium-catalyzed, directing group-enabled site selective intra- and intermolecular silylation of indoles and pyrroles with hydrosilanes has been developed under ligand-free conditions. Fine-tuning of the removable 3-alkyl-2-pyridyl directing group was found to be crucial for achieving high yields for C2-silylated indole and pyrrole products. Moreover, the scalability was demonstrated, and further transformations of the silylation products were achieved.
Collapse
Affiliation(s)
- Hui Sun
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Houyun Teng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoqi Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaokang Niu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu-Ming Cui
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Lei Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
12
|
Finck L, Oestreich M. Synthesis of Non‐Symmetric Azoarenes by Palladium‐Catalyzed Cross‐Coupling of Silicon‐Masked Diazenyl Anions and (Hetero)Aryl Halides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lucie Finck
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | - Martin Oestreich
- Technische Universität Berlin: Technische Universitat Berlin Chemistry Straße des 17. Juni 115 10623 Berlin GERMANY
| |
Collapse
|
13
|
Ding L, Niu K, Liu Y, Wang Q. Visible Light-Induced Hydrosilylation of Electron-Deficient Alkenes by Iron Catalysis. CHEMSUSCHEM 2022; 15:e202200367. [PMID: 35302291 DOI: 10.1002/cssc.202200367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Herein, we reported a method for iron-catalyzed, visible-light-induced hydrosilylation reactions of electron-deficient alkenes to produce value-added silicon compounds. Alkenes bearing functional groups with different steric properties were suitable substrates, as were derivatives of structurally complex natural products. Mechanistic studies showed that chlorine radicals generated by iron-catalyzed ligand-to-metal charge transfer in the presence of lithium chloride promoted the formation of silyl radicals.
Collapse
Affiliation(s)
- Ling Ding
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| | - Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
14
|
Gong X, Deng P, Cheng J. Calcium Mediated C—H Silylation of Aromatic Heterocycles with Hydrosilanes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xun Gong
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Peng Deng
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Jianhua Cheng
- Changchun Institute of Applied Chemistry State Key Laboratory of Polymer Physics and Chemistry Renmin Street. No. 5625 130022 Changchun CHINA
| |
Collapse
|
15
|
Chen F, Zheng Y, Yang H, Yang Q, Wu L, Zhou N. Iron‐Catalyzed Silylation and Spirocyclization of Biaryl‐Ynones: A Radical Cascade Process toward Silylated Spiro[5.5]trienones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fei Chen
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Yang Zheng
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Hao Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Qing‐Yun Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Lu‐Yan Wu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| |
Collapse
|