1
|
Chen Q, Wei W, Chao Z, Qi R, He J, Chen H, Wang K, Wang X, Rao Y, Zhou J. Electron transfer engineering of artificially designed cell factory for complete biosynthesis of steroids. Nat Commun 2025; 16:3740. [PMID: 40258825 PMCID: PMC12012142 DOI: 10.1038/s41467-025-58926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/04/2025] [Indexed: 04/23/2025] Open
Abstract
Biosynthesis of steroids by artificially designed cell factories often involves numerous nicotinamide adenine dinucleotide phosphate (NADPH)-dependent enzymes that mediate electron transfer reactions. However, the unclear mechanisms of electron transfer from regeneration to the final delivery to the NADPH-dependent active centers limit systematically engineering electron transfer to improve steroids production. Here, we elucidate the electron transfer mechanisms of NADPH-dependent enzymes for systematically engineer electron transfer of Saccharomyces cerevisiae, including step-by-step engineering the electron transfer residues of 7-Dehydrocholesterol reductase (DHCR7) and P450 sterol side chain cleaving enzyme (P450scc), electron transfer components for directing carbon flux, and NADPH regeneration pathways, for high-level production of the cholesterol (1.78 g/L) and pregnenolone (0.83 g/L). The electron transfer engineering (ETE) process makes the electron transfer chains shorter and more stable which significantly accelerates deprotonation and proton coupled electron transfer process. This study underscores the significance of ETE strategies in steroids biosynthesis and expands synthetic biology approaches.
Collapse
Affiliation(s)
- Qihang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenqian Wei
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zikai Chao
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Rui Qi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jianhong He
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Huating Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Ke Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xinglong Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
2
|
Aguado S, Gómez-Gallego M, Casarrubios L, Sierra MA. Electrocatalytic HER Performance of [FeFe]-Hydrogenase Mimics Bearing M-salen Moieties (M=Zn, Ni, Fe, Mn). Chemistry 2025; 31:e202403721. [PMID: 39714985 DOI: 10.1002/chem.202403721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The synthesis and characterization of novel compounds (5-8) as mimetics of [FeFe]-hydrogenase, combining two distinct systems capable of participating in hydrogen evolution reactions (HER): the [(μ-adt)Fe2(CO)6] fragment and M-salen complexes (salen=N,N'-bis(salicylidene)ethylenediamine) (M=Zn, Ni, Fe, Mn), is reported. These complexes were synthesized in high yields via a three-step procedure from N,N'-bis(4-R-salicylidene)ethanediamine) 4 [R=Fe2(CO)6(μ-SCH2)2NCOCH2O]. Structural analysis through spectroscopic, spectrometric, and computational (DFT) methods confirmed distorted tetrahedral and square-planar geometries for Zn-salen and Ni-salen complexes (5 and 6) respectively, while complexes Fe-salen 7 and Mn-salen 8 exhibit square-based pyramidal structures typical of Fe(III) and Mn(III) high-spin salen-complexes. Electrochemical studies revealed different reduction events for [(μ-adt)Fe2(CO)6] and M-salen moieties, but the electrocatalytic experiments in TFA demonstrated a clear cooperative effect between these components, especially at higher acid concentrations. Notably, the Ni-salen (6), Fe-salen (7), and Mn-salen (8) complexes exhibit significant reductions in overpotential, highlighting their potential for enhanced catalytic performance.
Collapse
Affiliation(s)
- Sergio Aguado
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040-, Madrid, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Dpto. de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040-, Madrid, Spain
| | - Mar Gómez-Gallego
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040-, Madrid, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Dpto. de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040-, Madrid, Spain
| | - Luis Casarrubios
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040-, Madrid, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Dpto. de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040-, Madrid, Spain
| | - Miguel A Sierra
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040-, Madrid, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Dpto. de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040-, Madrid, Spain
| |
Collapse
|
3
|
Yan W, Li X, Zhao D, Xie M, Li T, Qian L, Ye C, Shi T, Wu L, Wang Y. Advanced strategies in high-throughput droplet screening for enzyme engineering. Biosens Bioelectron 2024; 248:115972. [PMID: 38171222 DOI: 10.1016/j.bios.2023.115972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/05/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Enzymes, as biocatalysts, play a cumulatively important role in environmental purification and industrial production of chemicals and pharmaceuticals. However, natural enzymes are limited by their physiological properties in practice, which need to be modified driven by requirements. Screening and isolating certain enzyme variants or ideal industrial strains with high yielding of target product enzymes is one of the main directions of enzyme engineering research. Droplet-based high-throughput screening (DHTS) technology employs massive monodisperse emulsion droplets as microreactors to achieve single strain encapsulation, as well as continuous monitoring for the inside mutant library. It can effectively sort out strains or enzymes with desired characteristics, offering a throughput of 108 events per hour. Much of the early literature focused on screening various engineered strains or designing signalling sorting strategies based on DHTS technology. However, the field of enzyme engineering lacks a comprehensive overview of advanced methods for microfluidic droplets and their cutting-edge developments in generation and manipulation. This review emphasizes the advanced strategies and frontiers of microfluidic droplet generation and manipulation facilitating enzyme engineering development. We also introduce design for various screening signals that cooperate with DHTS and devote to enzyme engineering.
Collapse
Affiliation(s)
- Wenxin Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Xiang Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Danshan Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Meng Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Ting Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Lu Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing 210046, China.
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China.
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
4
|
Aguado S, García-Álvarez P, Cabeza JA, Casarrubios L, Sierra MA. A cross-metathesis approach for polymetallic [FeFe]-hydrogenase mimics. Dalton Trans 2024; 53:3756-3764. [PMID: 38304983 DOI: 10.1039/d3dt04197b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A method has been developed for synthesizing [FeFe]-H2ase mimics with diverse structures and properties, employing cross-metathesis of olefins. Vinylmetallocenes (5 and 6) and vinyl half-sandwich complexes (10 and 11) have been used as cross-metathesis partners with [FeFe]-H2ase mimics (4, 8, and 9) bearing a double bond in the moiety attached to the ADT-bridge nitrogen. Electrochemical studies of these complexes, encompassing metallocene-type (7a-b, 12a-b, and 13a-b) as well as half-sandwich derivatives (12c and 13c-d), have demonstrated that the introduction of a redox unit has a marginal impact on the reduction potential of these [FeFe]-H2ase mimics. The application of this cross-metathesis approach has allowed the synthesis of [FeFe]-H2ase mimics featuring an Ir(III) electrochemical antenna (16-18) as well as systems having an electron-donor-photosensitizer structure (ED-PS) (23). The electrocatalytic properties of these complexes have been elucidated through electrochemical studies.
Collapse
Affiliation(s)
- Sergio Aguado
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
- Centro de Innovación en Química Avanzada, (ORFEO-CINQA), Spain
| | - Pablo García-Álvarez
- Departamento de Química Orgánica e Inorgánica. Facultad de Química, Universidad de Oviedo, 33071 Oviedo, Spain
- Centro de Innovación en Química Avanzada, (ORFEO-CINQA), Spain
| | - Javier A Cabeza
- Departamento de Química Orgánica e Inorgánica. Facultad de Química, Universidad de Oviedo, 33071 Oviedo, Spain
- Centro de Innovación en Química Avanzada, (ORFEO-CINQA), Spain
| | - Luis Casarrubios
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
- Centro de Innovación en Química Avanzada, (ORFEO-CINQA), Spain
| | - Miguel A Sierra
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
- Centro de Innovación en Química Avanzada, (ORFEO-CINQA), Spain
| |
Collapse
|
5
|
Torres A, Vicent DJ, Collado A, Gómez-Gallego M, de Arellano CR, Sierra MA. Phosphite Bearing [(μ-ADT) RFe 2(CO) 6] (ADT = Azadithiolate) Moieties: A Tool for the Building of Multimetallic [FeFe]-Hydrogenase Mimics. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Alejandro Torres
- Departamento de Química Orgánica, Facultad de Química Universidad Complutense, 28040 Madrid, Spain
| | - Diego J. Vicent
- Departamento de Química Orgánica, Facultad de Química Universidad Complutense, 28040 Madrid, Spain
| | - Alba Collado
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mar Gómez-Gallego
- Departamento de Química Orgánica, Facultad de Química Universidad Complutense, 28040 Madrid, Spain
| | | | - Miguel A. Sierra
- Departamento de Química Orgánica, Facultad de Química Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
6
|
A photo-enzyme coupling catalysis system with high enzyme loading for the efficient degradation of BPA in water. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Aguado S, Vicent DJ, Casarrubios L, Ramírez de Arellano C, Sierra MA. Two Complementary Approaches to Silicon-Supported Soluble [FeFe]-Hydrogenase Mimics. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergio Aguado
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Centro de Innovación en Química Avanzada (ORFEO−CINQA), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Diego J. Vicent
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Centro de Innovación en Química Avanzada (ORFEO−CINQA), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Luis Casarrubios
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Centro de Innovación en Química Avanzada (ORFEO−CINQA), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Carmen Ramírez de Arellano
- Departamento de Química Orgánica, Universidad de Valencia, 46100 Valencia, Spain
- Centro de Innovación en Química Avanzada (ORFEO−CINQA), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Miguel A. Sierra
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Centro de Innovación en Química Avanzada (ORFEO−CINQA), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
8
|
Sanchez MK, Wiley S, Reijerse E, Lubitz W, Birrell JA, Dyer RB. Time-Resolved Infrared Spectroscopy Reveals the pH-Independence of the First Electron Transfer Step in the [FeFe] Hydrogenase Catalytic Cycle. J Phys Chem Lett 2022; 13:5986-5990. [PMID: 35736652 PMCID: PMC9251755 DOI: 10.1021/acs.jpclett.2c01467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
[FeFe] hydrogenases are highly active catalysts for hydrogen conversion. Their active site has two components: a [4Fe-4S] electron relay covalently attached to the H2 binding site and a diiron cluster ligated by CO, CN-, and 2-azapropane-1,3-dithiolate (ADT) ligands. Reduction of the [4Fe-4S] site was proposed to be coupled with protonation of one of its cysteine ligands. Here, we used time-resolved infrared (TRIR) spectroscopy on the [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydA1) containing a propane-1,3-dithiolate (PDT) ligand instead of the native ADT ligand. The PDT modification does not affect the electron transfer step to [4Fe-4S]H but prevents the enzyme from proceeding further through the catalytic cycle. We show that the rate of the first electron transfer step is independent of the pH, supporting a simple electron transfer rather than a proton-coupled event. These results have important implications for our understanding of the catalytic mechanism of [FeFe] hydrogenases and highlight the utility of TRIR.
Collapse
Affiliation(s)
- Monica
L. K. Sanchez
- Department
of Chemistry and Biochemistry, Montana State
University, Bozeman, Montana 59717, United States
- Department
of Chemistry, Emory University, Atlanta, Georgia 30030, United States
| | - Seth Wiley
- Department
of Chemistry, Emory University, Atlanta, Georgia 30030, United States
| | - Edward Reijerse
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - R. Brian Dyer
- Department
of Chemistry, Emory University, Atlanta, Georgia 30030, United States
| |
Collapse
|
9
|
White DW, Esckilsen D, Lee SK, Ragsdale SW, Dyer RB. Efficient, Light-Driven Reduction of CO 2 to CO by a Carbon Monoxide Dehydrogenase-CdSe/CdS Nanorod Photosystem. J Phys Chem Lett 2022; 13:5553-5556. [PMID: 35696266 PMCID: PMC10176083 DOI: 10.1021/acs.jpclett.2c01412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The solar conversion of CO2 to low carbon fuels has been heralded as a potential solution to combat the rise in greenhouse gas emissions. Here we report the first light-driven activation of [NiFe] CODH II from Carboxydothermus hydrogenoformans for the reduction of CO2 to CO. To accomplish this, a hybrid photosystem composed of CODH II and CdSe/CdS dot-in-rod nanocrystals was developed. By incorporating a low-potential redox mediator to assist electron transfer, quantum yields up to 19% and turnover frequencies of 9 s-1 were achieved. These results represent a new standard in efficient CO2 reduction by an enzyme-based photocatalytic systems. Furthermore, successful photoactivation of CODH II allows for future exploration into the enzyme's not fully understood mechanism.
Collapse
Affiliation(s)
- David W White
- Department of Chemistry, Emory University Atlanta, Georgia 30322, United States
| | - Daniel Esckilsen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, United States
| | - Seung Kyu Lee
- Department of Chemistry, Emory University Atlanta, Georgia 30322, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University Atlanta, Georgia 30322, United States
| |
Collapse
|