1
|
Göltl F, Bhandari S, Lebrón-Rodríguez EA, Gold JI, Hutton DJ, Zones SI, Hermans I, Dumesic JA, Mavrikakis M. Exploring the Impact of Active Site Structure on the Conversion of Methane to Methanol in Cu-Exchanged Zeolites. Angew Chem Int Ed Engl 2024; 63:e202403179. [PMID: 38574295 DOI: 10.1002/anie.202403179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
In the past, Cu-oxo or -hydroxy clusters hosted in zeolites have been suggested to enable the selective conversion of methane to methanol, but the impact of the active site's stoichiometry and structure on methanol production is still poorly understood. Herein, we apply theoretical modeling in conjunction with experiments to study the impact of these two factors on partial methane oxidation in the Cu-exchanged zeolite SSZ-13. Phase diagrams developed from first-principles suggest that Cu-hydroxy or Cu-oxo dimers are stabilized when O2 or N2O are used to activate the catalyst, respectively. We confirm these predictions experimentally and determine that in a stepwise conversion process, Cu-oxo dimers can convert twice as much methane to methanol compared to Cu-hydroxyl dimers. Our theoretical models rationalize how Cu-di-oxo dimers can convert up to two methane molecules to methanol, while Cu-di-hydroxyl dimers can convert only one methane molecule to methanol per catalytic cycle. These findings imply that in Cu clusters, at least one oxo group or two hydroxyl groups are needed to convert one methane molecule to methanol per cycle. This simple structure-activity relationship allows to intuitively understand the potential of small oxygenated or hydroxylated transition metal clusters to convert methane to methanol.
Collapse
Affiliation(s)
- Florian Göltl
- The University of Arizona, Department of Biosystems Engineering, 1177, E 4th St., 85719, Tucson, AZ, United States
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Saurabh Bhandari
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Edgard A Lebrón-Rodríguez
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Jake I Gold
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Daniel J Hutton
- The University of Arizona, Department of Biosystems Engineering, 1177, E 4th St., 85719, Tucson, AZ, United States
| | - Stacey I Zones
- Chevron Energy Technology Company, Richmond, CA 94804, United States
| | - Ive Hermans
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
- The University of Wisconsin - Madison, Department of Chemistry, 1101 University Avenue, 53706, Madison, WI, United States
| | - James A Dumesic
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Manos Mavrikakis
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| |
Collapse
|
2
|
Groppo E, Rojas-Buzo S, Bordiga S. The Role of In Situ/ Operando IR Spectroscopy in Unraveling Adsorbate-Induced Structural Changes in Heterogeneous Catalysis. Chem Rev 2023; 123:12135-12169. [PMID: 37882638 PMCID: PMC10636737 DOI: 10.1021/acs.chemrev.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 10/27/2023]
Abstract
Heterogeneous catalysts undergo thermal- and/or adsorbate-induced dynamic changes under reaction conditions, which consequently modify their catalytic behavior. Hence, it is increasingly crucial to characterize the properties of a catalyst under reaction conditions through the so-called "operando" approach. Operando IR spectroscopy is probably one of the most ubiquitous and versatile characterization methods in the field of heterogeneous catalysis, but its potential in identifying adsorbate- and thermal-induced phenomena is often overlooked in favor of other less accessible methods, such as XAS spectroscopy and high-resolution microscopy. Without detracting from these techniques, and while aware of the enormous value of a multitechnique approach, the purpose of this Review is to show that IR spectroscopy alone can provide relevant information in this field. This is done by discussing a few selected case studies from our own research experience, which belong to the categories of both "single-site"- and nanoparticle-based catalysts.
Collapse
Affiliation(s)
- Elena Groppo
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| | - Sergio Rojas-Buzo
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| | - Silvia Bordiga
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| |
Collapse
|
3
|
Prodinger S, Berdiell IC, Cordero-Lanzac T, Bygdnes OR, Solemsli BG, Kvande K, Arstad B, Beato P, Olsbye U, Svelle S. Cation-induced speciation of port-size during mordenite zeolite synthesis. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:21884-21894. [PMID: 38013680 PMCID: PMC10581370 DOI: 10.1039/d3ta03444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
Mordenite (MOR) zeolite, an important industrial catalyst exists in two, isostructural variants defined by their port-size, small and large-port. Here we show for the first time how a systematic, single-parameter variation influences the synthesis out-come on the final MOR material leading to distinctly different catalysts. The cation identity has a direct impact on the synthesis mechanism with potassium cations generating the more constrained, small-port MOR variant compared to the large-port obtained with sodium cations. This was expressed by different degrees of accessibility ascertained with a combination of toluene breakthrough and temperature programmed desorption (TPD), propylamine TPD, as well as sterically sensitive isobutane conversion. Rietveld refinement of the X-ray diffractograms elucidated the preferential siting of the smaller sodium cations in the constricted 8-ring, from which differences in Al distribution follow. Note, there are no organic structure directing agents utilized in this synthesis pointing at the important role of inorganic structure directing agents (ISDA).
Collapse
Affiliation(s)
- Sebastian Prodinger
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Izar Capel Berdiell
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Tomas Cordero-Lanzac
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Odd Reidar Bygdnes
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Bjørn Gading Solemsli
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Karoline Kvande
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | | | - Pablo Beato
- Topsøe A/S Haldor Topsøes Allé 1 2800 Kongens Lyngby Denmark
| | - Unni Olsbye
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Stian Svelle
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| |
Collapse
|
4
|
Kvande K, Garetto B, Deplano G, Signorile M, Solemsli BG, Prodinger S, Olsbye U, Beato P, Bordiga S, Svelle S, Borfecchia E. Understanding C-H activation in light alkanes over Cu-MOR zeolites by coupling advanced spectroscopy and temperature-programmed reduction experiments. Chem Sci 2023; 14:9704-9723. [PMID: 37736625 PMCID: PMC10510758 DOI: 10.1039/d3sc01677c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023] Open
Abstract
The direct activation of methane to methanol (MTM) proceeds through a chemical-looping process over Cu-oxo sites in zeolites. Herein, we extend the overall understanding of oxidation reactions over metal-oxo sites and C-H activation reactions by pinpointing the evolution of Cu species during reduction. To do so, a set of temperature-programmed reduction experiments were performed with CH4, C2H6, and CO. With a temperature ramp, the Cu reduction could be accelerated to detect changes in Cu speciation that are normally not detected due to the slow CH4 adsorption/interaction during MTM (∼200 °C). To follow the Cu-speciation with the three reductants, X-ray absorption spectroscopy (XAS), UV-vis and FT-IR spectroscopy were applied. Multivariate curve resolution alternating least-square (MCR-ALS) analysis was used to resolve the time-dependent concentration profiles of pure Cu components in the X-ray absorption near edge structure (XANES) spectra. Within the large datasets, as many as six different CuII and CuI components were found. Close correlations were found between the XANES-derived CuII to CuI reduction, CH4 consumption, and CO2 production. A reducibility-activity relationship was also observed for the Cu-MOR zeolites. Extended X-ray absorption fine structure (EXAFS) spectra for the pure Cu components were furthermore obtained with MCR-ALS analysis. With wavelet transform (WT) analysis of the EXAFS spectra, we were able to resolve the atomic speciation at different radial distances from Cu (up to about 4 Å). These results indicate that all the CuII components consist of multimeric CuII-oxo sites, albeit with different Cu-Cu distances.
Collapse
Affiliation(s)
- Karoline Kvande
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Beatrice Garetto
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| | - Gabriele Deplano
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| | - Matteo Signorile
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| | - Bjørn Gading Solemsli
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Sebastian Prodinger
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Unni Olsbye
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Pablo Beato
- Topsoe A/S, Haldor Topsøes Allé 1 DK-2800 Kgs. Lyngby Denmark
| | - Silvia Bordiga
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| | - Stian Svelle
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Elisa Borfecchia
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| |
Collapse
|
5
|
Pokhrel J, Shantz DF. Continuous Partial Oxidation of Methane to Methanol over Cu-SSZ-39 catalysts. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Plessers D, Heyer AJ, Rhoda HM, Bols ML, Solomon EI, Schoonheydt RA, Sels BF. Tuning Copper Active Site Composition in Cu-MOR through Co-Cation Modification for Methane Activation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, B-3001Leuven, Belgium
| | - Alexander J. Heyer
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Hannah M. Rhoda
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Max L. Bols
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, B-3001Leuven, Belgium
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| | - Robert A. Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, B-3001Leuven, Belgium
| | - Bert F. Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, B-3001Leuven, Belgium
| |
Collapse
|
7
|
Copper-zeolites Prepared by Solid-state Ion Exchange - Characterization and Evaluation for the Direct Conversion of Methane to Methanol. Top Catal 2022. [DOI: 10.1007/s11244-022-01763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractDirect conversion of methane to methanol (MTM) over Cu-zeolites is a so-called “dream reaction” for the chemical industry. There is still a lot that can be done in order to optimize the reaction by e.g. achieving a deeper understanding of the reaction mechanism and the nature of the Cu-sites. In this study, we investigated a solid-state ion exchange method to incorporate CuI ions into zeolites (MOR, BEA, ZSM-5 and FAU), as a more scalable technique. The solid-state ion exchange led to a Cu/Al ration of about 0.8, however with a heterogeneous distribution of Cu. Regardless, Fourier transform-infrared spectroscopy still revealed that most Brønsted acid sites were exchanged in all four samples. Further, CH4-temperature programmed reaction experiments showed that some Cu-sites formed were reactive towards CH4, with CuI-MOR and CuI-FAU having the largest CH4 consumption. Ultimately, the CuI-zeolites were tested in the MTM reaction and proved capable of producing methanol, even without the presence of Brønsted sites. A MOR with lower Cu/Al ratio (0.30) was also tested for comparison, and as this sample obtained a much higher productivity than the CuI-MOR with high Cu-loading (0.10 vs. 0.03 molMeOH/molCu), it was demonstrated that some fine-tuning is necessary to obtain the active Cu sites for methane activation.
Collapse
|
8
|
Signorile M, Borfecchia E, Bordiga S, Berlier G. Influence of ion mobility on the redox and catalytic properties of Cu ions in zeolites. Chem Sci 2022; 13:10238-10250. [PMID: 36277636 PMCID: PMC9473501 DOI: 10.1039/d2sc03565k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023] Open
Abstract
This contribution aims at analysing the current understanding about the influence of Al distribution, zeolite topology, ligands/reagents and oxidation state on ions mobility in Cu-zeolites, and its relevance toward reactivity of the metal sites. The concept of Cu mobilization has been originally observed in the presence of ammonia, favouring the activation of oxygen by formation of NH3 oxo-bridged complexes in zeolites and opening a new perspective about the chemistry in single-site zeolite-based catalysts, in particular in the context of the NH3-mediated Selective Catalytic Reduction of NO x (NH3-SCR) processes. A different mobility of bare Cu+/Cu2+ ions has been documented too, showing for Cu+ a better mobilization than for Cu2+ also in absence of ligands. These concepts can have important consequences for the formation of Cu-oxo species, active and selective in other relevant reactions, such as the direct conversion of methane to methanol. Here, assessing the structure, the formation pathways and reactivity of Cu-oxo mono- or multimeric moieties still represents a challenging playground for chemical scientists. Translating the knowledge about Cu ions mobility and redox properties acquired in the context of NH3-SCR reaction into the field of direct conversion of methane to methanol can have important implications for a better understanding of transition metal ions redox properties in zeolites and for an improved design of catalysts and catalytic processes.
Collapse
Affiliation(s)
- Matteo Signorile
- Department of Chemistry and NIS Centre, Università di Torino Via P. Giuria 7 Torino 10125 Italy
| | - Elisa Borfecchia
- Department of Chemistry and NIS Centre, Università di Torino Via P. Giuria 7 Torino 10125 Italy
| | - Silvia Bordiga
- Department of Chemistry and NIS Centre, Università di Torino Via P. Giuria 7 Torino 10125 Italy
| | - Gloria Berlier
- Department of Chemistry and NIS Centre, Università di Torino Via P. Giuria 7 Torino 10125 Italy
| |
Collapse
|